• Chinese Journal of Lasers
  • Vol. 48, Issue 7, 0701005 (2021)
Ye Zheng***, Qingle Ni, Lin Zhang, Xiaoxi Liu, Junlong Wang**, and Xuefeng Wang*
Author Affiliations
  • Beijing Institute of Aerospace Control Devices, Beijing 100094, China
  • show less
    DOI: 10.3788/CJL202148.0701005 Cite this Article Set citation alerts
    Ye Zheng, Qingle Ni, Lin Zhang, Xiaoxi Liu, Junlong Wang, Xuefeng Wang. Influence of Stimulated Raman Scattering on Propagation Properties of High-Power Laser[J]. Chinese Journal of Lasers, 2021, 48(7): 0701005 Copy Citation Text show less
    References

    [1] Tünnermann A, Schreiber T, Röser F et al. The renaissance and bright future of fibre lasers[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 38, S681-S693(2005). http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1088/0953-4075/38/9/016

    [2] Limpert J, Roser F, Klingebiel S et al. The rising power of fiber lasers and amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 537-545(2007).

    [3] Dawson J W, Messerly M J, Beach R J et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).

    [4] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 19, 10180-10192(2011).

    [5] Honea E, Afzal R S, Savage-Leuchs M et al. Advances in fiber laser spectral beam combining for power scaling[J]. Proceedings of SPIE, 9730, 97300Y(2016). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2214237

    [6] Zheng Y, Yang Y F, Wang J H et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 24, 12063-12071(2016). http://www.ncbi.nlm.nih.gov/pubmed/27410127

    [7] Zheng Y, Zhu Z D, Liu X X et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Applied Optics, 58, 8339-8343(2019). http://www.ncbi.nlm.nih.gov/pubmed/31674510

    [8] Ludewigt K, Liem A, Stuhr U et al. High-power laser development for laser weapons[J]. Proceeding of SPIE, 11162, 1116207(2019).

    [9] Yin Z, Yan F P, Liu S et al. Research of stimulated Brillouin scattering effect in 2 μm band single-frequency Raman fiber amplifier[J]. Navigation and Control, 14, 100-105(2015).

    [10] Liu W, Kuang W J, Jiang M et al. Modeling of the spectral evolution in a narrow-linewidth fiber amplifier[J]. Laser Physics Letters, 13, 035105(2016). http://adsabs.harvard.edu/abs/2016LaPhL..13c5105L

    [11] Chu Q H, Shu Q, Chen Z et al. Experimental study of mode distortion induced by stimulated Raman scattering in high-power fiber amplifiers[J]. Photonics Research, 8, 595-600(2020). http://www.researchgate.net/publication/339279993_Experimental_study_of_mode_distortion_induced_by_stimulated_Raman_scattering_in_high_power_fiber_amplifiers

    [12] He Q Y, Zong S G. Influence of atmosphere on the efficiency of shipborne laser weapons[J]. Command Control & Simulation, 41, 57-60(2019).

    [13] Ding Z L, Li X Q, Cao J Y et al. Thermal blooming effect of Hermite-Gaussian beams propagating through the atmosphere[J]. Journal of the Optical Society of America A, 36, 1152-1160(2019). http://www.ncbi.nlm.nih.gov/pubmed/31503953

    [14] Barchers J D. Linear analysis of thermal blooming compensation instabilities in laser propagation[J]. Journal of the Optical Society of America A, 26, 1638-1653(2009).

    [15] Ji X L, Tao X Y, Lü B D. The influence of thermal effects and aberrations in a beam control system on the beam quality in the far field[J]. Laser Technology, 28, 514-517(2004).

    [16] Tao X Y, Ji X L, Lü B D. Suppression of the thermal effect within a beam control system in the presence of wind[J]. High Power Laser & Particle Beams, 16, 1370-1374(2004).

    [17] Zhang E T, Ji X L, Lü B D. Influence of atmospheric absorption in the inner optical system on the laser beam quality[J]. Laser Technology, 30, 96-98(2006).

    [18] Sun Y Q. Study on the thermal blooming of beam propagation in the inner channel[D]. Changsha: National University of Defense Technology, 99-110(2011).

    [19] Zhang J H, Shi C P. Experimental research on thermal blooming effects of high energy laser internal optical transmission[J]. Electro-Optic Technology Application, 35, 45-49(2020).

    [20] Agrawal G P[M]. Nonlinear fiber optics(1997).

    [21] Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering[J]. Applied Optics, 11, 2489-2494(1972).

    [22] Hu M, Ke W W, Yang Y F et al. Low threshold Raman effect in high power narrowband fiber amplifier[J]. Chinese Optics Letters, 14, 0119010(2016).

    [23] Xu Y, Fang Q, Qin Y G et al. 2 kW narrow spectral width monolithic continuous wave in a near-diffraction-limited fiber laser[J]. Applied Optics, 54, 9419-9421(2015).

    [24] Lin H, Tao R, Li C et al. 3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability[J]. Optics Express, 27, 9716-9724(2019). http://www.ncbi.nlm.nih.gov/pubmed/31045120

    Ye Zheng, Qingle Ni, Lin Zhang, Xiaoxi Liu, Junlong Wang, Xuefeng Wang. Influence of Stimulated Raman Scattering on Propagation Properties of High-Power Laser[J]. Chinese Journal of Lasers, 2021, 48(7): 0701005
    Download Citation