• Acta Photonica Sinica
  • Vol. 47, Issue 12, 1223001 (2018)
LIN Wen-yan1、*, YU Ye1, PENG Xue-kang1, JIN Yu1, WU Zhi-jun1, and LIU Jing-hua1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20184712.1223001 Cite this Article
    LIN Wen-yan, YU Ye, PENG Xue-kang, JIN Yu, WU Zhi-jun, LIU Jing-hua. Fabricating Blue Phosphorescent Organic Light-emitting Devices by Using B3PyPPM as Electron Transport Layer[J]. Acta Photonica Sinica, 2018, 47(12): 1223001 Copy Citation Text show less
    References

    [1] KIDO J, HONGAWA K, OKUYAMA K, et al. White light-emitting organic electroluminescent devices using the poly (N-vinylcarbazole) emitter layer doped with three fluorescent dyes[J]. Applied Physics Letters, 1994, 64(7): 815-817.

    [2] ZU Jie, CHEN Ping, SHENG Ren, et al. Highly efficient blue organic light-emitting diodes[J]. Chinese Journal of Luminescence, 2017, 38(4): 487-491.

    [3] BAIDO M A, O′BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698): 151-154.

    [4] SHIH C H, RAJAMALLI P, WU C A, et al. A high triplet energy, high thermal stability oxadiazole derivative as the electron transporter for highly efficient red, green and blue phosphorescent OLEDs[J]. Journal of Materials Chemistry C, 2015, 3(7): 1491-1496.

    [5] WANG C, YUAN Y, LI S Y, et al. A highly twisted triarylborane-based biphenyl as an efficient host for blue and green phosphorescent OLEDs[J]. Journal of Materials Chemistry C, 2016, 4(32): 7607-7613.

    [6] AHN D H, JEONG J H, JIE S, et al. Highly efficient deep blue fluorescent organic light-emitting diodes boosted by thermally activated delayed fluorescence sensitization[J]. Acs Applied Materials & Interfaces, 2018, 10(12): 10246-10253.

    [7] CHEN Jiu-le. The study of the blue organic light emitting diode performance based on connecting layer[D]. Chengdu: University of Electronic Science and Technology of China, 2013.

    [8] CUIi L S, XIE Y M, WANG Y K, et al. Pure hydrocarbon hosts for≈ 100% exciton harvesting in both phosphorescent and fluorescent light-emitting devices[J]. Advanced Materials, 2015, 27(28): 4213-4217.

    [9] CHEN D, SU S J, CAO Y. Nitrogen heterocycle-containing materials for highly efficient phosphorescent OLEDs with low operating voltage[J]. Journal of Materials Chemistry C, 2014, 2(45): 9565-9578.

    [10] YANG X, ZHOU G, WONG W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices[J]. Chemical Society Reviews, 2015, 44(23): 8484-8575.

    [11] WEI X F, TAN W Y, ZOU J H, et al. High Tg small-molecule phenanthroline derivatives as a potential universal hole-blocking layer for high power-efficiency and stable organic light-emitting diodes[J]. Journal of Materials Chemistry C, 2017, 5(9): 2329-2336.

    [12] ZHANG Y, YU F X, MA X J, et al. Efficient red phosphorescent organic light emitting diodes based on solution processed all-inorganic cesium lead halide perovskite as hole transporting layer[J]. Organic Electronics, 2017, 50(5): 411-417.

    [13] LIU M, SU S J, JUNG M C, et al. Hybrid heterocycle-containing electron-transport materials synthesized by regioselective suzuki cross-coupling reactions for highly efficient phosphorescent OLEDs with unprecedented low operating voltage[J]. Chemistry of Materials, 2012, 24(24): 3817.

    [14] CHOU H H, CHENG C H. A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs[J]. Advanced Materials, 2010, 22(22): 2468-2471.

    [15] SHAHALIZAD A, D’ALéO A, ANDRAUD C, et al. Near infrared electroluminescence from Nd (TTA) 3phen in solution-processed small molecule organic light-emitting diodes [J]. Organic Electronics, 2017, 44: 50-58.

    [16] RAJAMALLI P, SENTHILKUMAR N, GANDEEPAN P, et al. A thermally activated delayed blue fluorescent emitter with reversible externally tunable emission[J]. Journal of Materials Chemistry C, 2016, 4(5): 900-904.

    [17] DOH Y J, PARK J S, JEON W S, et al. Soluble processed low-voltage and high efficiency blue phosphorescent organic light-emitting devices using small molecule host systems[J]. Organic Electronics, 2012, 13(4): 586-592.

    [18] BIN J K, CHO N S, HONG J I. New host material for high‐performance blue phosphorescent organic electroluminescent devices[J]. Advanced Materials, 2012, 24(21): 2911-2915.

    [19] SASABE H, MINAMOTO K, PU Y J, et al. Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%[J]. Organic Electronics, 2012, 13(11): 2615-2619.

    [20] CHEN C, LIU Y F, CHEN Z, et al. High efficiency warm white phosphorescent organic light emitting devices based on blue light emission from a bipolar mixed-host[J]. Organic Electronics, 2017, 45: 273-278.

    [21] POITRAS D, KUO C C, PY C. Design of high-contrast OLEDs with microcavity effect[J]. Optics Express, 2008, 16(11): 8003-8015.

    [22] ZHANG Chun-yu, WANG Cheng, XIAO Li-guang, et al. Spectral analysis of organic/microcavity organic light-emitting devices with the change in thickness of organic layer[J]. Spectroscopy & Spectral Analysis, 2012, 32(1): 69-73.

    CLP Journals

    [1] CHEN Ai, WANG Zhen, XIE Jia-feng, WANG Pei, XIAO Fei, CHEN Jia-wen, LU Yong-sheng, ZHANG Wen-xia, WANG Yu-chan. Green Phosphorescent Tandem Organic Light-emitting Diodes Based on Organic Heterojunction of C60/ZnPc[J]. Acta Photonica Sinica, 2019, 48(7): 723003

    [2] CHAI Yuan, WANG Jun-dong, LIU Si-yi, LIU Xuan, YUAN Xi, DONG He, WANG Jin. High-efficiency White Organic Light-emitting Diodes with Dual-emitting Layer[J]. Acta Photonica Sinica, 2019, 48(8): 823003

    LIN Wen-yan, YU Ye, PENG Xue-kang, JIN Yu, WU Zhi-jun, LIU Jing-hua. Fabricating Blue Phosphorescent Organic Light-emitting Devices by Using B3PyPPM as Electron Transport Layer[J]. Acta Photonica Sinica, 2018, 47(12): 1223001
    Download Citation