• Acta Photonica Sinica
  • Vol. 40, Issue 11, 1607 (2011)
YAO Baoli1、*, LEI Ming2, XUE Bin3、4, GAO Peng2, YAN Shaohui2, ZHAO Hui3、4, ZHAO Wei2, YANG Jianfeng3、4, FAN Xuewu3、4, QIU Yuehong3、4, GAO Wei3、4, ZHAO Baochang3、4, and LI Yingcai3、4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3788/gzxb20114011.1607 Cite this Article
    YAO Baoli, LEI Ming, XUE Bin, GAO Peng, YAN Shaohui, ZHAO Hui, ZHAO Wei, YANG Jianfeng, FAN Xuewu, QIU Yuehong, GAO Wei, ZHAO Baochang, LI Yingcai. Progress and Applications of Highresolution and Superresolution Optical Imaging in Space and Biology[J]. Acta Photonica Sinica, 2011, 40(11): 1607 Copy Citation Text show less
    References

    [2] RICHARDS B, WOLF E. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system[C]. Proceedings of the Royal Society A, 1959, 253: 358379.

    [3] DORN R, QUABIS S, LEUCHS G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 3901.

    [4] ZHAO Baochang, YANG Jianfeng, WEN Desheng, et al. Overall scheme and onorbit images of Chang′e2 lunar satellite CCD stereo camera[J]. Science China: Technological Sciences, 2011, 54(9): 22372242.

    [5] XUE Bin, ZHAO Baochang, YANG JianFeng, et al. Autocompensation of velocityheight ratio for Chang′e2 satellite CCD stereo camera[J]. Science China: Technological Sciences, 2011, 54(9): 22432246.

    [7] LATRY C, ROUGE B. Optimized sampling for CCD instruments: the supermode scheme[C]. IEEE Proceedings IGARSS, 2000, 4: 23222324 .

    [8] DOWSKI E R Jr, CATHEY W T. Extended depth of field through wavefront coding[J]. Applied Optics, 1995, 34(11): 18591866.

    [9] LEE S H, PARK N C, PARK K S, et al. Upscaling image resolution of compact imaging systems using wavefront coding and a property of the pointspread function[J]. JOSA A, 2010, 27(10): 23042312.

    [10] QIAO Yanfeng, LIU Kun, DUAN Xiangyong. Optical synthetic aperture imaging techniques and development[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(3): 175182.

    [11] LIANG Shitong, YANG Jianfeng, LI Xiangjuan, et al. Study of a new sparseaperture system[J]. Acta Photonica Sinica, 2010, 39(1): 148152.

    [12] YU Qianyang, QU Hongsong. Realization of highresolution visible earth observation on geostationary earth orbit[J]. Chinese Optics and Applied Optics, 2009, 2(1): 129.

    [13] LU Changming, WANG Jianjun, GAO Xin, et al. A study on the theory of Fourier telescope and its improvement[J]. Journal of Spacecraft TT & C Technology, 2010, 29(2): 1720.

    [14] GIEPMANS B N, ADAMS S R, ELLISMAN M H, et al. The fluorescent toolbox for assessing protein location and function[J]. Science, 2006, 312(5771): 217224.

    [15] LORD S J, LEE H L, MOERNER W E. Singlemolecule spectroscopy and imaging of biomolecules in living cells[J]. Analytical Chemistry, 82(6): 21922203.

    [16] XIE X S, CHOI P J, LI G W, et al. Singlemolecule approach to molecular biology in living bacterial cells[J]. Annual Review of Biophysics, 2008, 37: 417444.

    [17] PAWLEY J B. Handbook of biological confocal microscopy[M]. 3rd ed. USA: Springer, 2006.

    [18] FORKEY J N, QUINLAN M E, GOLDMAN Y E. Measurement of single macromolecule orientation by total internal reflection fluorescence polarization microscopy[J]. Biophysical Journal, 2005, 89(2): 12611271.

    [19] SYNGE E H. A suggested method for extending microscopic resolution into the ultramicroscopic region[J]. Philosophical Magazine, 1928, 6: 356362.

    [20] BETZIG E, LEWIS A, HAROOTUNIAN A, et al. Nearfield scanning optical microscopy(NSOM)development and biophysical applications[J]. Biophysical Journal, 1986, 49(1): 269279.

    [21] MOERNER W E. New directions in singlemolecule imaging and analysis[C]. Proc Natl Acad Sci, USA, 104, 2007: 1259612602.

    [22] THOMPSON R E, LARSON D R, WEBB W W. Precise nanometer localization analysis for individual fluorescent probes[J]. Biophysical Journal, 2002, 82(5): 27752783.

    [23] YILDIZ A, FORKEY J N, McKINNEY S A, et al. Myosin V walks handoverhand: single fluorophore imaging with 1.5 nm localization[J]. Science, 2003, 300(5628): 20612065.

    [24] PERTSINIDIS A, ZHANG Y, CHU S. Subnanometre singlemolecule localization, registration and distance measurements[J]. Nature, 2010, 466(7306): 647651.

    [25] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 16421645.

    [26] RUST M J, BATES M, ZHUANG X. Subdiffractionlimit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793795.

    [27] LV Zhijian, LU Jingze, WU Yaqiong, et al. Introduction to theories of several superresolution fluorescence microscopy methods and recent advance in the field[J]. Progress in Biochemistry and Biophysics, 2009, 36(12): 16261634.

    [28] HUANG B, BATES M, ZHUANG X. Superresolution uorescence microscopy[J]. Annual Review of Biochemistry, 2009, 78: 9931016.

    [29] SHROFF H, GALBRAITH C G, GALBRAITH J A, et al. Livecell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 2008, 5(5): 417423.

    [30] PATTERSON G, DAVIDSON M, MANLEY S, et al. Superresolution imaging using singlemolecule localization[J]. Annual Review of Physical Chemistry, 2010, 61: 345367.

    [31] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulatedemissiondepletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780782.

    [32] KLAR T A, JAKOBS S, DYBA M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15): 82068210.

    [33] RITTWEGER E, HAN K Y, IRVINE S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2009, 3: 144147.

    [34] WESTPHAL V, RIZZOLI S O, LAUTERBACH M A, et al. Videorate farfield optical nanoscopy dissects synaptic vesicle movement[J]. Science, 2008, 320(5873): 246249.

    [35] WILLIG K I, RIZZOLI S O, WESTPHAL V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086): 935939.

    [36] GUSTAFSSON M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 8287.

    [37] GUSTAFSSON M G L. Nonlinear structuredillumination microscopy: widefield fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 1308113086.

    [38] GUSTAFSSON M G L, SHAO L, CARITON P M, et al. Threedimensional resolution doubling in widefield fluorescence microscopy by structured illumination[J]. Biophysical Journal, 2008, 94(12): 49574970.

    [39] SCHERMELLEH L, CARLTON P M, HAASE S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 2008, 320(5881): 13321336.

    [40] SHAO L, ISAAC B, UZAWA S, et al. Gustafsson. I5M: widefield light microscopy with 100nmscale resolution in three dimensions[J]. Biophysical Journal, 2008, 94(12): 49714983.

    [41] http://www.lynceetec.com/content/view/481/192/.

    [42] MICO V, ZALEVSKY Z, FERREIRA C, et al. Superresolution digital holographic microscopy for threedimensional samples[J]. Optics Express, 2008, 16(23): 1926019270.

    [43] SCHWARZ C J, KUZNETSOVA Y, BRUECK S R J. Imaging interferometric microscopy[J]. Optics Letters, 2003, 28(16): 14241426.

    [44] ALLEN R D, DAVID G B, NOMARSKI G. The ZeissNomarski differential equipment for transmitted light microscopy[J]. Z Wiss Mickrosk, 1969, 69(4): 193221.

    [45] FU D, OH S, CHOI W, et al. Quantitative DIC microscopy using an offaxis selfinterference approach[J]. Optics Letters, 2010, 35(14): 23702372.

    [46] McINTYRE T J, MAURER C, BERNET S, et al. Differential interference contrast imaging using a spatial light modulator[J]. Optics Letters, 1999, 34(19): 29882990.

    [47] McINTYRE T J, MAURER C, FASSL S, et al. Quantitative SLMbased differential interference contrast imaging[J]. Optics Express, 2010, 18(13): 1406314078.

    [48] HEISE B, STIFTER D. Quantitative phase reconstruction for orthogonalscanning differential phasecontrast optical coherence tomography[J]. Optics Letters, 2009, 34(9): 13061308.

    [49] ZERNIKE F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9: Part I, 686698, Part II, 974986.

    [50] POPESCU G, DEFLORES L P, VAUGHAN J C, et al. Fourier phase microscopy for investigation of biological structures and dynamics[J]. Optics Letters, 2004, 29(21): 25032505.

    [51] http://www.microscopyu.com/articles/phasecontrast/phasemicroscopy.html.

    [52] GAO P, YAO B, HARDER I, et al. Phaseshifting Zernike phase contrast microscopy for quantitative phase measurement[J]. Optics Letters, 2011, 36(21): 43054307.

    [53] LI X, YAMAUCHI T, IWAI H, et al. Fullfield quantitative phase imaging by whitelight interferometry with active phase stabilization and its application to biological samples[J]. Optics Letters, 2006, 31(12): 18301832.

    [54] MASSATSCH P, CHARRIRE F, CUCHE E, et al. Timedomain optical coherence tomography with digital holographic microscopy[J]. Applied Optics, 2005, 44(10): 18061812.

    CLP Journals

    [1] REN Chen-gang, LIANG Yong-hui, YU Qi-feng. High Resolution Imaging of Extended Object by Speckle Imaging[J]. Acta Photonica Sinica, 2014, 43(2): 210002

    [2] MA Yu, ZHAO Jiu-long, YU Ting, LI Shuang. The Reconstruction Algorithm of Boundary Surfaces Based on the 3D Fractional Differential Enhancement[J]. Acta Photonica Sinica, 2014, 43(10): 1011004

    [3] GAO Tian-yuan, DONG Zheng-chao, ZHAO Yu, LIU Zhi-ying. Structure and Alignment of Field Stitching Compound Eye Optical Imaging System[J]. Acta Photonica Sinica, 2014, 43(11): 1122001

    [4] PANG Hui, DU Chun-lei, QIU Qi, DENG Qi-ling, ZHANG Man, YIN Shao-yun. Investigation of Microsphere Based Thin-film for Super-resolution Imaging[J]. Acta Photonica Sinica, 2015, 44(4): 426004

    [5] LI Xi-yu, GAO Xin, TANG Jia, FENG Ling-jie. Amelioration of Intensity Correlation Array towards High-Orbit Satellite Imaging[J]. Acta Photonica Sinica, 2015, 44(6): 611002

    [6] Pan Leiting, Hu Fen, Zhang Xinzheng, Xu Jingjun. Multicolor Single-Molecule Localization Super-Resolution Microscopy[J]. Acta Optica Sinica, 2017, 37(3): 318010

    [7] QIAN Lulu, XIANGLI Bin, Lv Qunbo, HUANG Min. Analysis and Simulation of Effect of Spectral Line Bending on Computational Imaging Spectrometry[J]. Acta Photonica Sinica, 2013, 42(8): 897

    [8] JI Xiao-qiang, CHENG Jie-zhang, LI Qi, GONG Ping, GUO Rui-juan, YU Yuan-hua. Optical Microscopic Imaging and Image Processing for Cell Factories[J]. Acta Photonica Sinica, 2015, 44(7): 711004

    [9] CAO A-xiu, SHI Li-fang, SHI Rui-ying, DENG Qi-ling, DU Chun-lei. Image Processing Algorithm Study of Large FOV Compound Eye Structure[J]. Acta Photonica Sinica, 2014, 43(5): 510005

    [10] MA Hao-yu, XU Zhi-hai, FENG Hua-jun, LI Qi, CHEN Yue-ting. Image Super-resolution Based on Tiny Recurrent Convolutional Neural Network[J]. Acta Photonica Sinica, 2018, 47(4): 410004

    YAO Baoli, LEI Ming, XUE Bin, GAO Peng, YAN Shaohui, ZHAO Hui, ZHAO Wei, YANG Jianfeng, FAN Xuewu, QIU Yuehong, GAO Wei, ZHAO Baochang, LI Yingcai. Progress and Applications of Highresolution and Superresolution Optical Imaging in Space and Biology[J]. Acta Photonica Sinica, 2011, 40(11): 1607
    Download Citation