• NUCLEAR TECHNIQUES
  • Vol. 46, Issue 3, 030202 (2023)
Qi WU1、2, Yuguo LIU1、2, Jianli LIU1, Liangting SUN1、2, and Hongwei ZHAO1、2、*
Author Affiliations
  • 1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 2School of Nuclear Sciences and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.11889/j.0253-3219.2023.hjs.46.030202 Cite this Article
    Qi WU, Yuguo LIU, Jianli LIU, Liangting SUN, Hongwei ZHAO. Design of a high current ion source for an electromagnetic isotope separator[J]. NUCLEAR TECHNIQUES, 2023, 46(3): 030202 Copy Citation Text show less

    Abstract

    Background

    Stable isotopes play a crucial role in a variety of fields such as energy, military, semiconductor, agriculture, medicine, pharmacology, biology, food industry, and chemistry. With the rapid growth of nuclear science and technology applications in China, there has been an increasing demand for isotopes that cannot be met by current production capacities. Thus, the development of electromagnetic isotope separators capable of producing high yields and high isotopic purity has become necessary.

    Purpose

    This study aims to develop an electromagnetic isotope separator based on a 2.45 GHz microwave ion source and isotopic magnet for studying a number of important heavy isotopes, such as xenon and molybdenum isotopes.

    Methods

    Firstly, adjustable axial magnetic field in the source was designed by a double-solenoids to obtain high density plasma, and a high coupling efficiency matching waveguide was optimized by CST microwave computing module. Then. a crucible built in the discharge chamber was used to melt metal oxide for generating heavy metal ion beams. Finally, the discharge chamber, microwave coupling waveguides and heating oven of the ion source were simulated and designed for the generation of heavy ions.

    Results

    Simulation result shows that the temperature around the crucible is 917 ℃ when the current of heating wire is set to 70 A, and 100 mA hydrogen beam is generated during commissioning. The designed crucible in the discharge chamber can generate metal vapor efficiently for ionization, and achieve producing 20 emA Xe+ and 5 emA Mo+ respectively at the energy of 40 keV.

    Conclusions

    The feasible scheme of the magnetic field and microwave coupling design of this study are verified. The design of the 2.45 GHz electron cyclotron resonance (ECR) ion source provides a feasible and effective solution for the high yields isotope ions.

    Qi WU, Yuguo LIU, Jianli LIU, Liangting SUN, Hongwei ZHAO. Design of a high current ion source for an electromagnetic isotope separator[J]. NUCLEAR TECHNIQUES, 2023, 46(3): 030202
    Download Citation