• Frontiers of Optoelectronics
  • Vol. 3, Issue 1, -1 (2010)
Valeri I. KOVALEV1、2、*, Robert G. HARRISON1, and Nadezhda E. KOTOVA1、2
Author Affiliations
  • 1Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS, UK
  • 2P. N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia
  • show less
    DOI: 10.1007/s12200-009-0079-8 Cite this Article
    Valeri I. KOVALEV, Robert G. HARRISON, Nadezhda E. KOTOVA. Physical mechanism of “slow light” in stimulated Brillouin scattering[J]. Frontiers of Optoelectronics, 2010, 3(1): -1 Copy Citation Text show less
    References

    [1] Brillouin L. Wave Propagation and Group Velocity. New York: Academic Press, 1960

    [2] Boyd R W, Gauthier D J. “Slow” and “fast” light. Progress in Optics, 2002, 43(6): 497–530

    [3] Gauthier D J. Slow light brings faster communications. Physics World, 2005, 18: 30–32

    [4] Thevenaz L. Slow and fast light in optical fibres. Nature Photonics, 2008, 2(8): 474–481

    [5] Kroll N M. Excitation of hypersonic vibrations by means of photoelastic coupling of high-intensity light waves to elastic waves. Journal of Applied Physics, 1965, 36(1): 34–43

    [6] Zeldovich B Ya. Time of establishment of stationary regime of stimulated light scattering. Journal of Experimental and Theoretical Physics Letters, 1972, 15: 158–159

    [7] Okawachi Y, Bigelow M S, Sharping J E, Zhu Z, Schweinsberg A, Gauthier D J, Boyd RW, Gaeta A L. Tunable all-optical delays via Brillouin slow light in an optical fiber. Physical Review Letters, 2005, 94(15): 153902

    [8] Zeldovich B Ya, Pilipetskii N F, Shkunov V V. Principles of Phase Conjugation. Berlin: Springer Verlag, 1985

    [9] Song K Y, HerraezMG, Thevenaz L. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Optics Express, 2005, 13(1): 82–88

    [10] Zhu Z, Gauthier D J, Okawachi Y, Sharping J E, Gaeta A L, Boyd R W,Willner A E. Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber. Journal of the Optical Society of American B, 2005, 22(11): 2378–2384

    [11] Bronshtein I N, Semendyaev K A. A Guide-Book to Mathematics. Zurich: Verlag Harri Deutsch, 1973

    [12] Pohl D, Kaiser W. Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media: determination of phonon lifetimes. Physical Review B, 1970, 1(1): 31–43

    [13] Kovalev V I, Harrison R G. Threshold for stimulated Brillouin scattering in optical fiber. Optics Express, 2007, 15(26): 17625–17630

    [14] Pinnow D A. Guide lines for the selection of acoustooptic materials. IEEE Journal of Quantum Electronics, 1970, 6(4): 223–238

    [15] Agrawal G P. Nonlinear Fiber Optics. 2nd ed. Boston: Academic, 1995

    [16] Kovalev V I, Harrison R G. Observation of inhomogeneous spectral broadening of stimulated Brillouin scattering in an optical fiber. Physical Review Letters, 2000, 85(9): 1879–1882

    [17] Kovalev V I, Harrison R G. Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber. Optics Letters, 2002, 27(22): 2022–2024

    [18] Kalosha V P, Cheng L, Bao X. Slow and fast light via SBS in optical fibers for short pulses and broadband pump. Optics Express, 2006, 14(26): 12693–12703

    [19] Stenner M D, Neifeld M A, Zhu Z, Dawes A M C, Gauthier D J. Distortion management in slow-light pulse delay. Optics Express, 2005, 13(25): 9995–10002

    [20] Herraez M G, Song K Y, Thevenaz L. Arbitrary-bandwidth Brillouin slow light in optical fibers. Optics Express, 2006, 14(4): 1395–1400

    [21] Minardo A, Bernini R, Zeni L. Low distortion Brillouin slow light in optical fibers using AM modulation. Optics Express, 2006, 14(13): 5866–5876

    [22] Shumakher E, Orbach N, Nevet A, Dahan D, Eisenstein G. On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers. Optics Express, 2006, 14(13): 5877–5884

    [23] Zhu Z, Gauthier D J. Nearly transparent SBS slow light in an optical fiber. Optics Express, 2006, 14(16): 7238–7245

    [24] Schneider T, Junker M, Lauterbach K U, Henker R. Distortion reduction in cascaded slow light delays. Electronics Letters, 2006, 42(19): 1110–1112

    [25] Zadok A, Eyal A, Tur M. Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp. Optics Express, 2006, 14(19): 8498–8505

    [26] Chin S, Gonzalez-Herraez M, Thevenaz L. Zero-gain slow and fast light propagation in an optical fiber. Optics Express, 2006, 14(22): 10684–10692

    [27] Schneider T, Junker M, Lauterbach K U. Potential ultra wide slowlight bandwidth enhancement. Optics Express, 2006, 14(23): 11082–11087

    [28] Kalosha V P, Cheng L, Bao X. Slow and fast light via SBS in optical fibers for short pulses and broadband pump. Optics Express, 2006, 14(26): 12693–12703

    [29] Zhu Z, Dawes A M C, Gauthier D J, Zhang L, Willner A E. Broadband SBS slow light in an optical fiber. Journal of Lightwave Technology, 2007, 25(1): 201–206

    [30] Song K Y, Hotate K. 25 GHz bandwidth Brillouin slow light in optical fibers. Optics Letters, 2007, 32(3): 217–219

    [31] Lu Z, Dong Y, Li Q. Slow light in multi-line Brillouin gain spectrum. Optics Express, 2007, 15(4): 1871–1877

    [32] Zhang B, Yan L, Fazal I, Zhang L,Willner A E, Zhu Z, Gauthier D J. Slow light on Gbit/s differential-phase-shift-keying signals. Optics Express, 2007, 15(4): 1878–1883

    [33] Yi L, Zhan L, Hu W, Xia Y. Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump. IEEE Photonics Technology Letters, 2007, 19(8): 619–621

    [34] Zhang B, Zhang L, Yan L S, Fazal I, Yang J Y, Willner A E. Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line. Optics Express, 2007, 15(13): 8317–8322

    [35] Shi Z, Pant R, Zhu Z, Stenner M D, Neifeld M A, Gauthier D J, Boyd R W. Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity. Optics Letters, 2007, 32(14): 1986–1988

    [36] Schneider T, Henker R, Lauterbach K U, Junker M. Comparison of delay enhancement mechanisms for SBS-based slow light systems. Optics Express, 2007, 15(15): 9606–9613

    [37] Yi L, Jaouen Y, Hu W, Zhou J, Su Y, Pincemin E. Simultaneous demodulation and slow light of differential phase-shift keying signals using stimulated-Brillouin-scattering-based optical filtering in fiber. Optics Letters, 2007, 32(21): 3182–3184

    [38] Yi L, Jaouen Y, Hu W, Su Y, Bigo S. Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS. Optics Express, 2007, 15(25): 16972–16979

    [39] Song K Y, Abedin K S, Hotate K. Gain assisted superluminal propagation in tellurite glass fiber based on stimulated Brillouin scattering. Optics Express, 2008, 16(1): 225–230

    [40] Pant R, Stenner M D, Neifeld M A, Gauthier D J. Optimal pump profile designs for broadband SBS-based slow light systems. Optics Express, 2008, 16(4): 2764–2777

    [41] Ren L, Tomita Y. Reducing group-velocity-dispersion-dependent broadening of stimulated Brillouin scattering slow light in an optical fiber by use of a single pump laser. Journal of the Optical Society of American B, 2008, 25(5): 741–746

    [42] Sakamoto T, Yamamoto T, Shiraki K, Kurashima T. Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb. Optics Express, 2008, 16(11): 8026–8032

    [43] Wang S, Ren L, Liu Y, Tomita Y. Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams. Optics Express, 2008, 16(11): 8067–8076

    [44] Schneider T, Henker R, Lauterbach K U, Junker M. Distortion reduction in slow light systems based on stimulated Brillouin scattering. Optics Express, 2008, 16(11): 8280–8285

    [45] Schneider T. Time delay limits of stimulated-Brillouin-scatteringbased slow light systems. Optics Letters, 2008, 33(13): 1398–1400

    [46] Cheng A, Fok M P, Shu C. Wavelength-transparent, stimulated-Brillouin-scattering slow light using cross-gain-modulation-based wavelength converter and Brillouin fiber laser. Optics Letters, 2008, 33(22): 2596–2598

    [47] Korn G A, Korn TM. Manual of Mathematics. New York: McGraw-Hill, 1967

    [48] Akhmanov S A, Dyakov Y E, Chirkin A S. Introduction to Statistical Radiophysics and Optics. Berlin: Springer, 1988

    [49] Carman R L, Shimizu F, Wang C S, Bloembergen N. Theory of Stokes pulse shapes in transient simulated Raman scattering. Physical Review A, 1970, 2(1): 60–72

    [50] Akhmanov S A, Drabovich K N, Sukhorukov A P, Chirkin A S. Stimulated Raman scattering in a field of ultrashort light pulses. Soviet Journal of Experimental and Theoretical Physics, 1971, 32: 266–273

    [51] Bel’dyugin I M, Efimkov V F, Mikhailov S I, Zubarev I G. Amplification of weak Stokes signals in the transient regime of stimulated Brillouin scattering. Journal of Russian Laser Research, 2005, 26(1): 1–12

    [52] Kovalev V I, Kotova N E, Harrison R G. Effect of acoustic wave inertia and its implication to slow light via stimulated Brillouin scattering in an extended medium. Optics Express, 2009, 17(4): 2826–2833

    [53] Milonni P W, Eberly J H. Lasers. New York: Wiley, 1988

    Valeri I. KOVALEV, Robert G. HARRISON, Nadezhda E. KOTOVA. Physical mechanism of “slow light” in stimulated Brillouin scattering[J]. Frontiers of Optoelectronics, 2010, 3(1): -1
    Download Citation