• Matter and Radiation at Extremes
  • Vol. 4, Issue 6, 064401 (2019)
ZhiGuo Ma1, HaoYang Lan1, WeiYuan Liu2, ShaoDong Wu1, Yi Xu3, ZhiChao Zhu1, and Wen Luo1、a)
Author Affiliations
  • 1School of Nuclear Science and Technology, University of South China, 421001 Hengyang, People’s Republic of China
  • 2Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
  • 3Extreme Light Infrastructure–Nuclear Physics, RO-077125 Magurele, Romania
  • show less
    DOI: 10.1063/1.5100925 Cite this Article
    ZhiGuo Ma, HaoYang Lan, WeiYuan Liu, ShaoDong Wu, Yi Xu, ZhiChao Zhu, Wen Luo. Photonuclear production of medical isotopes 62,64Cu using intense laser-plasma electron source[J]. Matter and Radiation at Extremes, 2019, 4(6): 064401 Copy Citation Text show less
    References

    [1] U. Köster, D. Habs. Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance. Appl. Phys. B, 103, 501-519(2011).

    [2] M. Bobeica, D. Niculae et al. Radioisotope production for medical applications at ELI-NP. Rom. Rep. Phys., 68, 847-883(2016).

    [3] W. Luo. Production of medical radioisotope Cu-64 by photoneutron reaction using ELI-NP γ-ray beam. Nucl. Sci. Technol., 27, 96(2016).

    [4] P. J. Blower et al. Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl. Med. Biol., 23, 957-980(1996).

    [5] K. R. Zinn, T. R. Chaudhuri et al. Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding. Cancer, 73, 774-778(1994).

    [6] J. Y. Kim et al. A simple Cu-64 production and its application of Cu-64 ATSM. Appl. Radiat. Isot., 67, 1190-1194(2009).

    [7] F. Simonelli, J. Kozempal, K. Abbas et al. A novel method for n. γ. a. 64Cu production by the 64Zn(d, 2p)64Cu reaction and dual ion-exchange column chromatography. Radiochim. Acta, 95, 75-80(2007).

    [8] J. B. Philip et al. Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl. Med. Biol., 23, 957-980(1996).

    [9] Y. Fujibayashi et al. A new zinc-62/copper-62 generator as a copper-62 source for PET radiopharmaceuticals. J. Nucl. Med., 30, 1838-1842(1989).

    [10] A. G. Mark. Copper-62 radiopharmaceuticals for diagnistic imaging with position emission tomography (PET). Transition Met. Chem., 22, 427(1997).

    [11] T. Fukumura, K. Okada et al. An improved 62Zn/62Cu generator based on a cation exchanger and its fully remote-controlled preparation for clinical use. Nucl. Med. Biol., 33, 821-827(2006).

    [12] M. Bobeica, D. Filipescu, W. Luo et al. Production of radioisotopes of medical interest by photonuclear reaction using ELI-NP γ-ray beam. Acta Phys. Pol. B, 47, 763-769(2016).

    [13] P. Gould. Medical isotope shortage reaches crisis level. Nature, 460, 312-313(2009).

    [14] R. Radioisotopes, V. Noorden. The medical testing crisis. Nature, 504, 202-204(2013).

    [15] D. Hillier, N. Hopps, C. Danson et al. Petawatt class lasers worldwide. High Power Laser Sci. Eng., 3, e3(2015).

    [16] C. L. Labaune, G. A. Mourou, M. Dunne et al. Relativistic laser-matter interaction: From attosecond pulse generation to fast ignition. Plasma Phys. Controlled Fusion, 49, B667(2007).

    [17] G. A. Mourou, S. V. Bulanov, T. Tajima. Optics in the relativistic regime. Rev. Mod. Phys., 78, 309(2006).

    [18] R. P. Singhal, P. McKenna, K. W. D. Ledingham. Applications for nuclear phenomena generated by ultra-intense lasers. Science, 300, 1107-1111(2003).

    [19] Y. Q. Gu, W. Qi et al. Enhanced photoneutron production by intense picoseconds laser interacting with gas-solid hybrid targets. Phys. Plasmas, 26, 043103(2019).

    [20] V. Malka, S. Fritzler, G. Grillon et al. Proton beams generated with high-intensity lasers: Applications to medical isotope production. Appl. Phys. Lett., 83, 3039-3041(2003).

    [21] P. McKenna, K. W. D. Ledingham, T. McCanny et al. High power laser production of short-lived isotopes for positron emission tomography. J. Phys. D: Appl. Phys., 37, 2341(2004).

    [22] C. P. Ridgers, J. G. Kirk, R. Duclous et al. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions. J. Comput. Phys., 260, 273-285(2014).

    [23] K. Amako, J. Allison, S. Agostinelli et al. GEANT4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A, 506, 250-303(2003).

    [24] Y. Xu, W. Luo, H. Y. Lan et al. Implementation of the n-body Monte-Carlo event generator into the Geant4 toolkit for photonuclear studies. Nucl. Instrum. Methods Phys. Res., Sect. A, 849, 49-54(2017).

    [25] A. Modena et al. Electron acceleration from the breaking of relativistic plasma waves. Nature, 377, 606(1995).

    [26] H. Lu, B. Liu, R. Hu et al. Dense helical electron bunch generation in near-critical density plasmas with ultrarelativistic laser intensities. Sci. Rep., 5, 15499(2015).

    [27] Z. Y. Xu, W. Luo, X. L. Wang et al. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator. Phys. Plasmas, 24, 093105(2017).

    [28] X. L. Wang, Z. Y. Tan, W. Luo et al. Photo-transmutation of long-lived radionuclide 135Cs by laser–plasma driven electron source. Laser Part. Beams, 34, 433-439(2016).

    [29] H. Omidvar, R. Sadighi-Bonabi, E. Irani. Gamma rays transmutation of Palladium by bremsstrahlung and laser inverse Compton scattering. Energy Convers. Manage., 77, 558-563(2014).

    [30] V. V. Varlamov, M. A. Makarov, A. I. Davydov et al. Reliability of the data on the cross sections of the partial photoneutron reaction for 63,65 Cu and 80Se nuclei. Bull. Russ. Acad. Sci.: Phys., 80, 317-324(2016).

    [31] K. M. Spohr, M. Shaw, W. Galster et al. Study of photo-proton reactions driven by bremsstrahlung radiation of high-intensity laser generated electrons. New J. Phys., 10, 043037(2008).

    [32] D. Filipescu, D. L. Balabanski, W. Luo. A data-based photonuclear simulation algorithm for determining specific activity of medical radioisotopes. Nucl. Sci. Tech., 27, 113(2016).

    [33] W. Luo, M. Bobeica et al. Estimates for production of radioisotopes of medical interest at extreme light infrastructure–nuclear physics facility. Appl. Phys. B, 122, 8(2016).

    [34] D. Zhou, R. Zhang, X. Tian et al. Single-mode millijoule fiber laser system with high pulse shaping ability. Optik, 157, 1087-1093(2018).

    [35] A. Klenke et al. Coherently combined 16-channel multicore fiber laser system. Opt. Lett., 43, 1519(2018).

    [36] S. Fourmaux, S. Payeur et al. Laser beam wavefront correction for ultra-high intensities with the 200 TW laser system at the advanced laser light source. Opt. Express, 16, 11987-11994(2008).

    [37] S. Banerjee, J. Zhang, C. Liu et al. Repetitive petawatt-class laser with near-diffraction-limited focal spot and transform-limited pulse duration. Proc. SPIE, 8599, 859919(2013).

    [38] M. D. Perry, D. Pennington, B. C. Stuart et al. Petawatt laser pulses. Opt. Lett., 24, 160-162(1999).

    [39] N. G. Haynes et al. Performance of a 62Zn/62Cu generator in clinical trials of PET perfusion agent 62Cu-PTSM. J. Nucl. Med., 41, 309-314(2000).

    [40] B. F. Shen, T. J. Xu et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Phys. Plasmas, 23, 033109(2016).

    ZhiGuo Ma, HaoYang Lan, WeiYuan Liu, ShaoDong Wu, Yi Xu, ZhiChao Zhu, Wen Luo. Photonuclear production of medical isotopes 62,64Cu using intense laser-plasma electron source[J]. Matter and Radiation at Extremes, 2019, 4(6): 064401
    Download Citation