• Matter and Radiation at Extremes
  • Vol. 6, Issue 6, 068402 (2021)
Thomas Meier1、a), Alena Aslandukova2, Florian Trybel3, Dominique Laniel4, Takayuki Ishii1, Saiana Khandarkhaeva2, Natalia Dubrovinskaia4, and Leonid Dubrovinsky2
Author Affiliations
  • 1Center for High Pressure Science and Technology Advanced Research, Beijing, China
  • 2Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
  • 3Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
  • 4Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, Germany
  • show less
    DOI: 10.1063/5.0065879 Cite this Article
    Thomas Meier, Alena Aslandukova, Florian Trybel, Dominique Laniel, Takayuki Ishii, Saiana Khandarkhaeva, Natalia Dubrovinskaia, Leonid Dubrovinsky. In situ high-pressure nuclear magnetic resonance crystallography in one and two dimensions[J]. Matter and Radiation at Extremes, 2021, 6(6): 068402 Copy Citation Text show less
    References

    [1] M.Levitt. Spin Dynamics: Basics of Nuclear Magnetic Resonance, 60-61(2009).

    [2] D. M.Grant, K. H.Grant, K. H.Robin, H.Grant K., D. M.Robin. Encyclopedia of Magnetic Resonance(2007).

    [3] L.Dubrovinsky, N.Dubrovinskaia. Crystallography taken to the extreme. Phys. Scr., 93, 062501(2018).

    [4] J. M.Thornton, P. C.Driscoll, M. W.MacArthur. NMR and crystallography—Complementary approaches to structure determination. Trends Biotechnol., 12, 149-153(1994).

    [5] D. L.Bryce. NMR crystallography: Structure and properties of materials from solid-state nuclear magnetic resonance observables. IUCrJ, 4, 350-359(2017).

    [6] C.Martineau. NMR crystallography: Applications to inorganic materials. Solid State Nucl. Magn. Reson., 63–64, 1-12(2014).

    [7] H.-K.Mao, J.Chen, H.Zheng, J.-F.Lin, K.Li, B.Chen, W.Yang. Recent advances in high-pressure science and technology. Matter Radiat. Extremes, 1, 59-75(2016).

    [8] G.Webb, T.Meier. At its extremes: NMR at giga-pascal pressures. Annual Reports on NMR Spectroscopy, 1-74(2018).

    [9] T.Meier, J. G.Korvink, D.Mager, S.Petitgirard, L.Dubrovinsky, N.Wang. Magnetic flux tailoring through Lenz lenses for ultrasmall samples: A new pathway to high-pressure nuclear magnetic resonance. Sci. Adv., 3, eaao5242(2017).

    [10] T.Meier, S.Khandarkhaeva, S.Petitgirard, A.Lauerer, E.R?ssler, L.Dubrovinsky, T.K?rber. NMR at pressures up to 90 GPa. J. Magn. Reson., 292, 44-47(2018).

    [11] S.Khandarkhaeva, K.Glazyrin, G.Steinle-Neumann, N.Dubrovinskaia, M.Hanfland, T.Fedotenko, F.Trybel, T.Meier, S.Petitgirard, S.Chariton, L.Dubrovinsky. Pressure-induced hydrogen-hydrogen interaction in metallic FeH revealed by NMR. Phys. Rev. X, 9, 031008(2019).

    [12] N.Dubrovinskaia, A. P.Dwivedi, T.Fedotenko, L.Dubrovinsky, S.Khandarkhaeva, T.Meier. Table-top nuclear magnetic resonance system for high-pressure studies with in situ laser heating. Rev. Sci. Instrum., 90, 123901(2019).

    [13] T.Meier. Journey to the centre of the Earth: Jules Vernes’ dream in the laboratory from an NMR perspective. Prog. Nucl. Magn. Reson. Spectrosc., 106–107, 26-36(2018).

    [14] W. E.Palke, S. A.Smith, J. T.Gerig. The Hamiltonians of NMR. Part I. Concepts Magn. Reson., 4, 107-144(1992).

    [15] G. E.Pake. Nuclear resonance absorption in hydrated crystals: Fine structure of the proton line. J. Chem. Phys., 16, 327-336(1948).

    [16] J.Klinowski, J. W.Hennel, J.Klinowski. Magic-angle spinning: A historical perspective. New Techniques in Solid-State NMR, 1-14(2005).

    [17] J.Haase, T.Herzig, T.Meier. Moissanite anvil cell design for giga-pascal nuclear magnetic resonance. Rev. Sci. Instrum., 85, 043903(2014).

    [18] S.Khandarkhaeva, T.Meier, S.Petitgirard, L.Dubrovinsky. Observation of nuclear quantum effects and hydrogen bond symmetrisation in high pressure ice. Nat. Commun., 9, 2766(2018).

    [19] T.Meier, D.Laniel, L.Dubrovinsky, N.Dubrovinskaia, J.Jacobs, M.Pena-Alvarez, A.Krupp, S.Khandarkhaeva, F.Trybel. Nuclear spin coupling crossover in dense molecular hydrogen. Nat. Commun., 11, 6334(2020).

    [20] W. I.Goldburg, M.Lee. Nuclear-magnetic-resonance line narrowing by a rotating rf field. Phys. Rev., 140, A1261-A1271(1965).

    [21] J.Haase, T.Meier, S.Reichardt. High-sensitivity NMR beyond 200 000 atmospheres of pressure. J. Magn. Reson., 257, 39-44(2015).

    [22] N.Dubrovinskaia, L.Dubrovinsky, J.Jacobs, T.Meier, S.Khandarkhaeva. Improving resolution of solid state NMR in dense molecular hydrogen. Appl. Phys. Lett., 115, 131903(2019).

    [23] Y.Akahama, H.Kawamura. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: Method for pressure determination in the multimegabar pressure range. J. Appl. Phys., 96, 3748(2004).

    [24] H.Kawamura, Y.Akahama. Pressure calibration of diamond anvil Raman gauge to 310GPa. J. Appl. Phys., 100, 043516(2006).

    [25] A.Wokaun, G.Bodenhausen, A. G.Redfield, R. R.Ernst. Principles of nuclear magnetic resonance in one and two dimensions. Phys. Today, 42, 75-76(1989).

    [26] H.-K.Mao, B.Li, P.Dalladay-Simpson, C.Ji, R. T.Howie, E.Gregoryanz. Everything you always wanted to know about metallic hydrogen but were afraid to ask. Matter Radiat. Extremes, 5, 038101(2020).

    [27] R. P.Dias, I. F.Silvera. Observation of the Wigner-Huntington transition to metallic hydrogen. Science, 355, 715-718(2017).

    [28] H. Y.Geng. Public debate on metallic hydrogen to boost high pressure research. Matter Radiat. Extremes, 2, 275-277(2017).

    [29] T.Fedotenko, N.Dubrovinskaia, V.Prakapenka, L.Dubrovinsky, S.Chariton, V.Milman, D.Laniel, B.Winkler, A.Pakhomova. High-pressure polymeric nitrogen allotrope with the black phosphorus structure. Phys. Rev. Lett., 124, 216001(2020).

    [30] H.Liu, X.Feng, Y.Ma, Y.Li, W.Lei, D.Liu, J.Hao, S. A. T.Redfern. Route to high-energy density polymeric nitrogen t-N via He–N compounds. Nat. Commun., 9, 722(2018).

    [31] B.Winkler, E.Koemets, M.Bykov, E.Bykova, N.Dubrovinskaia, T.Fedotenko, D.Laniel, L.Dubrovinsky. Synthesis of magnesium-nitrogen salts of polynitrogen anions. Nat. Commun., 10, 4515(2019).

    [32] G.Weck, D.Laniel, P.Loubeyre. Direct reaction of nitrogen and lithium up to 75 GPa: Synthesis of the Li3N, LiN, LiN2, and LiN5 compounds. Inorg. Chem., 57, 10685-10693(2018).

    [33] G.Garbarino, G.Gaiffe, G.Weck, D.Laniel, P.Loubeyre. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett., 9, 1600-1604(2018).

    [34] C. I.Ratcliffe, L. A.O’Dell. Ultra-wideline 14N NMR spectroscopy as a probe of molecular dynamics. Chem. Commun., 46, 6774-6776(2010).

    [35] R. W.Schurko. Ultra-wideline solid-state NMR spectroscopy. Acc. Chem. Res., 46, 1985-1995(2013).

    [36] M.Witanowski, L.Stefaniak, G.Webb, G. A.Webb. Nitrogen NMR spectroscopy. Annual Reports on NMR Spectroscopy, 1-82(1993).

    [37] G. S.Harbison, R. S.Macomber. A complete introduction to modern NMR spectroscopy. Phys. Today, 52, 68(1999).

    [38] D.Simonova, N.Dubrovinskaia, A.Simonov, L.Dubrovinsky, E.Bykova, T.Kawazoe, M.Bykov. Structural study of δ-ALOOH up to 29 GPa. Minerals, 10, 1055(2020).

    [39] J. J.Molaison, A.Sano-Furukawa, T.Nagai, A. M.dos Santos, K.Komatsu, C. A.Tulk, H.Kagi, T.Hattori. Direct observation of symmetrization of hydrogen bond in δ-AlOOH under mantle conditions using neutron diffraction. Sci. Rep., 8, 15520(2018).

    [40] D. M.Maurya, P. K.Jha, S. B.Pillai, A.Padmalal, L. S.Chamyal. First principles study of hydrogen bond symmetrization in δ-AlOOH. J. Appl. Phys., 123, 115901(2018).

    [41] P.Cortona. Hydrogen bond symmetrization and elastic constants under pressure of δ-AlOOH. J. Phys.: Condens. Matter, 29, 325505(2017).

    [42] N.Hirao, T.Kikegawa, Y.Ohishi, T.Sakai, N.Sata, T.Kondo, E.Ohtani, A.Sano. Aluminous hydrous mineral δ-AlOOH as a carrier of hydrogen into the core-mantle boundary. Geophys. Res. Lett., 35, L03303(2008).

    [43] S.Wang, X.Li, Z.Mao, X.Guo, N.Sun, H.Ni, Y.Duan, V. B.Prakapenka. Phase stability and thermal equation of state of δ-AlOOH: Implication for water transportation to the deep lower mantle. Earth Planet. Sci. Lett., 494, 92-98(2018).

    [44] H.Gou, X.Yu, H.Tang, L.Xu, C.Lv, X.Su, Y.Zhuang, N.Salke, Q.Sun, C.Zhao et al. The effect of iron on the sound velocitoes of δ-AlOOH up to 135 GPa. Geosci. Front., 12, 937-946(2021).

    [45] H.-k.Mao, W. L.Mao. Key problems of the four-dimensional Earth system. Matter Radiat. Extremes, 5, 038102(2020).

    [46] C. P.Grey, A. J.Pell, G.Pintacuda. Paramagnetic NMR in solution and the solid state. Prog. Nucl. Magn. Reson. Spectrosc., 111, 1-271(2019).

    [47] L.Zhang, H.Yuan. In situ determination of crystal structure and chemistry of minerals at Earth’s deep lower mantle conditions. Matter Radiat. Extremes, 2, 117-128(2017).

    [48] X.-J.Chen. Exploring high-temperature superconductivity in hard matter close to structural instability. Matter Radiat. Extremes, 5, 068102(2020).

    [49] N. W.Ashcroft. Hydrogen dominant metallic alloys: High temperature superconductors?. Phys. Rev. Lett., 92, 187002(2004).

    [50] A. P.Drozdov, M. I.Eremets, V.Ksenofontov, I. A.Troyan, S. I.Shylin. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73-76(2015).

    [51] Y.Ma, J.Lv, Y.Sun, H.Liu. Theory-orientated discovery of high-temperature superconductors in superhydrides stabilized under high pressure. Matter Radiat. Extremes, 5, 068101(2020).

    [52] M.Tkacz, S. P.Besedin, D. E.Graf, F. F.Balakirev, E.Greenberg, V. S.Minkov, M. I.Eremets, M. A.Kuzovnikov, L.Balicas, D. A.Knyazev, A. P.Drozdov, S.Mozaffari, V. B.Prakapenka, P. P.Kong. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528-531(2019).

    [53] Z. M.Geballe, M.Ahart, A. K.Mishra, Y.Meng, R. J.Hemley, M.Baldini, V. V.Struzhkin, M.Somayazulu. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).

    [54] E.Snider, A.Salamat, R.McBride, H.Vindana, K.Vencatasamy, R. P.Dias, K. V.Lawler, N.Dasenbrock-Gammon, M.Debessai. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586, 373-377(2020).

    [55] E.Greenberg, V.Prakapenka, X.-J.Chen, H.-k.Mao, B.Li, A.Gavriliuk, C.Ji, V.Struzhkin, I.Troyan. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory. Matter Radiat. Extremes, 5, 028201(2020).

    [56] P. P.Kong, S. P.Besedin, V. S.Minkov, S.Mozaffari, A. P.Drozdov, M. A.Kuzovnikov et al. Superconductivity up to 243 K in yttrium hydrides under high pressure(2019).

    [57] N.Dubrovinskaia, M.Hanfland, K.Glazyrin, T.Fedotenko, L.Dubrovinsky, D.Laniel, M.Bykov, T.Meier, F.Trybel, G.Criniti, E.Koemets, S.Khandarkhaeva, G.Steinle-Neumann. Proton mobility in metallic copper hydride from high-pressure nuclear magnetic resonance. Phys. Rev. B, 102, 165109(2020).

    [58] H.Liu, Y.Li, J.Hao, Y.Ma, Y.Wang, J. S.Tse. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep., 5, 9948(2015).

    [59] C. Z.Wang, L. L.Liu, H. J.Sun, W. C.Lu. High-pressure structures of yttrium hydrides. J. Phys.: Condens. Matter, 29, 325401(2017).

    [60] W.Yang, H.Xiao, H.-K.Mao, J.Liu, H.Gou, K.Li, B.Chen, L.Wang. 2020—Transformative science in the pressure dimension. Matter Radiat. Extremes, 6, 013001(2021).

    [61] C.-S.Yoo. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids. Matter Radiat. Extremes, 5, 018202(2020).

    [62] B.Monserrat, C. J.Pickard, S. E.Ashbrook. Nuclear magnetic resonance spectroscopy as a dynamical structural probe of hydrogen under high pressure. Phys. Rev. Lett., 122, 135501(2019).

    [63] E.Greenberg, X.Huang, A.Soldatov, W.Yang, R.Xu, S.Sinogeikin, Y.Meng, A.Majumdar, W.Liu, G.Shen, B.Li, C.Ji, J. S.Smith, A.Bj?rling, V. B.Prakapenka, J.Shu, H.-K.Mao, W. L.Mao, Y.Ding, W.Luo, J.Wang, R.Ahuja. Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen. Matter Radiat. Extremes, 5, 038401(2020).

    [64] D. V.Semenok, I. A.Savkin, I. A.Kruglov, A. R.Oganov, A. G.Kvashnin. On distribution of superconductivity in metal hydrides. Curr. Opin. Solid State Mater. Sci(2020).

    Thomas Meier, Alena Aslandukova, Florian Trybel, Dominique Laniel, Takayuki Ishii, Saiana Khandarkhaeva, Natalia Dubrovinskaia, Leonid Dubrovinsky. In situ high-pressure nuclear magnetic resonance crystallography in one and two dimensions[J]. Matter and Radiation at Extremes, 2021, 6(6): 068402
    Download Citation