[1] M.Levitt. Spin Dynamics: Basics of Nuclear Magnetic Resonance, 60-61(2009).
[2] D. M.Grant, K. H.Grant, K. H.Robin, H.Grant K., D. M.Robin. Encyclopedia of Magnetic Resonance(2007).
[3] N.Dubrovinskaia, L.Dubrovinsky. Crystallography taken to the extreme. Phys. Scr., 93, 062501(2018).
[4] P. C.Driscoll, M. W.MacArthur, J. M.Thornton. NMR and crystallography—Complementary approaches to structure determination. Trends Biotechnol., 12, 149-153(1994).
[5] D. L.Bryce. NMR crystallography: Structure and properties of materials from solid-state nuclear magnetic resonance observables. IUCrJ, 4, 350-359(2017).
[6] C.Martineau. NMR crystallography: Applications to inorganic materials. Solid State Nucl. Magn. Reson., 63–64, 1-12(2014).
[7] B.Chen, J.Chen, K.Li, J.-F.Lin, H.-K.Mao, W.Yang, H.Zheng. Recent advances in high-pressure science and technology. Matter Radiat. Extremes, 1, 59-75(2016).
[8] T.Meier, G.Webb. At its extremes: NMR at giga-pascal pressures. Annual Reports on NMR Spectroscopy, 1-74(2018).
[14] J. T.Gerig, W. E.Palke, S. A.Smith. The Hamiltonians of NMR. Part I. Concepts Magn. Reson., 4, 107-144(1992).
[15] G. E.Pake. Nuclear resonance absorption in hydrated crystals: Fine structure of the proton line. J. Chem. Phys., 16, 327-336(1948).
[16] J. W.Hennel, J.Klinowski, J.Klinowski. Magic-angle spinning: A historical perspective. New Techniques in Solid-State NMR, 1-14(2005).
[17] J.Haase, T.Herzig, T.Meier. Moissanite anvil cell design for giga-pascal nuclear magnetic resonance. Rev. Sci. Instrum., 85, 043903(2014).
[19] N.Dubrovinskaia, L.Dubrovinsky, J.Jacobs, S.Khandarkhaeva, A.Krupp, D.Laniel, T.Meier, M.Pena-Alvarez, F.Trybel. Nuclear spin coupling crossover in dense molecular hydrogen. Nat. Commun., 11, 6334(2020).
[20] W. I.Goldburg, M.Lee. Nuclear-magnetic-resonance line narrowing by a rotating rf field. Phys. Rev., 140, A1261-A1271(1965).
[21] J.Haase, T.Meier, S.Reichardt. High-sensitivity NMR beyond 200 000 atmospheres of pressure. J. Magn. Reson., 257, 39-44(2015).
[23] Y.Akahama, H.Kawamura. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: Method for pressure determination in the multimegabar pressure range. J. Appl. Phys., 96, 3748(2004).
[24] Y.Akahama, H.Kawamura. Pressure calibration of diamond anvil Raman gauge to 310GPa. J. Appl. Phys., 100, 043516(2006).
[25] G.Bodenhausen, R. R.Ernst, A. G.Redfield, A.Wokaun. Principles of nuclear magnetic resonance in one and two dimensions. Phys. Today, 42, 75-76(1989).
[26] P.Dalladay-Simpson, E.Gregoryanz, R. T.Howie, C.Ji, B.Li, H.-K.Mao. Everything you always wanted to know about metallic hydrogen but were afraid to ask. Matter Radiat. Extremes, 5, 038101(2020).
[28] H. Y.Geng. Public debate on metallic hydrogen to boost high pressure research. Matter Radiat. Extremes, 2, 275-277(2017).
[30] X.Feng, J.Hao, W.Lei, Y.Li, D.Liu, H.Liu, Y.Ma, S. A. T.Redfern. Route to high-energy density polymeric nitrogen
[31] M.Bykov, E.Bykova, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, E.Koemets, D.Laniel, B.Winkler. Synthesis of magnesium-nitrogen salts of polynitrogen anions. Nat. Commun., 10, 4515(2019).
[32] D.Laniel, P.Loubeyre, G.Weck. Direct reaction of nitrogen and lithium up to 75 GPa: Synthesis of the Li3N, LiN, LiN2, and LiN5 compounds. Inorg. Chem., 57, 10685-10693(2018).
[33] G.Gaiffe, G.Garbarino, D.Laniel, P.Loubeyre, G.Weck. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett., 9, 1600-1604(2018).
[34] L. A.O’Dell, C. I.Ratcliffe. Ultra-wideline 14N NMR spectroscopy as a probe of molecular dynamics. Chem. Commun., 46, 6774-6776(2010).
[35] R. W.Schurko. Ultra-wideline solid-state NMR spectroscopy. Acc. Chem. Res., 46, 1985-1995(2013).
[36] L.Stefaniak, G.Webb, G. A.Webb, M.Witanowski. Nitrogen NMR spectroscopy. Annual Reports on NMR Spectroscopy, 1-82(1993).
[37] G. S.Harbison, R. S.Macomber. A complete introduction to modern NMR spectroscopy. Phys. Today, 52, 68(1999).
[38] M.Bykov, E.Bykova, N.Dubrovinskaia, L.Dubrovinsky, T.Kawazoe, A.Simonov, D.Simonova. Structural study of
[39] A. M.dos Santos, T.Hattori, H.Kagi, K.Komatsu, J. J.Molaison, T.Nagai, A.Sano-Furukawa, C. A.Tulk. Direct observation of symmetrization of hydrogen bond in
[40] L. S.Chamyal, P. K.Jha, D. M.Maurya, A.Padmalal, S. B.Pillai. First principles study of hydrogen bond symmetrization in
[41] P.Cortona. Hydrogen bond symmetrization and elastic constants under pressure of
[42] N.Hirao, T.Kikegawa, T.Kondo, Y.Ohishi, E.Ohtani, T.Sakai, A.Sano, N.Sata. Aluminous hydrous mineral
[43] Y.Duan, X.Guo, X.Li, Z.Mao, H.Ni, V. B.Prakapenka, N.Sun, S.Wang. Phase stability and thermal equation of state of
[44] H.Gou, C.Lv, N.Salke, X.Su, Q.Sun, H.Tang, L.Xu, X.Yu, C.Zhao, Y.Zhuang et al. The effect of iron on the sound velocitoes of
[45] H.-k.Mao, W. L.Mao. Key problems of the four-dimensional Earth system. Matter Radiat. Extremes, 5, 038102(2020).
[46] C. P.Grey, A. J.Pell, G.Pintacuda. Paramagnetic NMR in solution and the solid state. Prog. Nucl. Magn. Reson. Spectrosc., 111, 1-271(2019).
[47] H.Yuan, L.Zhang. In situ determination of crystal structure and chemistry of minerals at Earth’s deep lower mantle conditions. Matter Radiat. Extremes, 2, 117-128(2017).
[48] X.-J.Chen. Exploring high-temperature superconductivity in hard matter close to structural instability. Matter Radiat. Extremes, 5, 068102(2020).
[49] N. W.Ashcroft. Hydrogen dominant metallic alloys: High temperature superconductors?. Phys. Rev. Lett., 92, 187002(2004).
[50] A. P.Drozdov, M. I.Eremets, V.Ksenofontov, S. I.Shylin, I. A.Troyan. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73-76(2015).
[51] H.Liu, J.Lv, Y.Ma, Y.Sun. Theory-orientated discovery of high-temperature superconductors in superhydrides stabilized under high pressure. Matter Radiat. Extremes, 5, 068101(2020).
[52] F. F.Balakirev, L.Balicas, S. P.Besedin, A. P.Drozdov, M. I.Eremets, D. E.Graf, E.Greenberg, D. A.Knyazev, P. P.Kong, M. A.Kuzovnikov, V. S.Minkov, S.Mozaffari, V. B.Prakapenka, M.Tkacz. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528-531(2019).
[54] N.Dasenbrock-Gammon, M.Debessai, R. P.Dias, K. V.Lawler, R.McBride, A.Salamat, E.Snider, K.Vencatasamy, H.Vindana. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586, 373-377(2020).
[55] X.-J.Chen, A.Gavriliuk, E.Greenberg, C.Ji, B.Li, H.-k.Mao, V.Prakapenka, V.Struzhkin, I.Troyan. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory. Matter Radiat. Extremes, 5, 028201(2020).
[56] S. P.Besedin, A. P.Drozdov, P. P.Kong, M. A.Kuzovnikov, V. S.Minkov, S.Mozaffari et al. Superconductivity up to 243 K in yttrium hydrides under high pressure(2019).
[57] M.Bykov, G.Criniti, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, K.Glazyrin, M.Hanfland, S.Khandarkhaeva, E.Koemets, D.Laniel, T.Meier, G.Steinle-Neumann, F.Trybel. Proton mobility in metallic copper hydride from high-pressure nuclear magnetic resonance. Phys. Rev. B, 102, 165109(2020).
[58] J.Hao, Y.Li, H.Liu, Y.Ma, J. S.Tse, Y.Wang. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep., 5, 9948(2015).
[59] L. L.Liu, W. C.Lu, H. J.Sun, C. Z.Wang. High-pressure structures of yttrium hydrides. J. Phys.: Condens. Matter, 29, 325401(2017).
[60] B.Chen, H.Gou, K.Li, J.Liu, H.-K.Mao, L.Wang, H.Xiao, W.Yang. 2020—Transformative science in the pressure dimension. Matter Radiat. Extremes, 6, 013001(2021).
[61] C.-S.Yoo. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids. Matter Radiat. Extremes, 5, 018202(2020).
[63] R.Ahuja, A.Bj?rling, Y.Ding, E.Greenberg, X.Huang, C.Ji, B.Li, W.Liu, W.Luo, A.Majumdar, H.-K.Mao, W. L.Mao, Y.Meng, V. B.Prakapenka, G.Shen, J.Shu, S.Sinogeikin, J. S.Smith, A.Soldatov, J.Wang, R.Xu, W.Yang. Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen. Matter Radiat. Extremes, 5, 038401(2020).
[64] I. A.Kruglov, A. G.Kvashnin, A. R.Oganov, I. A.Savkin, D. V.Semenok. On distribution of superconductivity in metal hydrides. Curr. Opin. Solid State Mater. Sci(2020).