[1] 1毕凯, 桂德竹. 浅谈地理国情监测与基础测绘[J]. 遥感信息, 2014, 29(4): 10-15. doi: 10.3969/j.issn.1000-3177.2014.04.003BIK, GUID Z. Brief probe into national geographic conditions monitoring and fundamental surveying and mapping[J]. Remote Sensing Information, 2014, 29(4): 10-15.(in Chinese). doi: 10.3969/j.issn.1000-3177.2014.04.003
[2] 2李德仁, 姚远, 邵振峰. 智慧城市中的大数据[J]. 武汉大学学报·信息科学版, 2014, 39(6): 631-640.LID R, YAOY, SHAOZ F. Big data in smart city[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 631-640.(in Chinese)
[3] 3李华玉, 陈永富, 陈巧, 等. 基于遥感技术的森林树种识别研究进展[J]. 西北林学院学报, 2021, 36(6): 220-229. doi: 10.3969/j.issn.1001-7461.2021.06.31LIH Y, CHENY F, CHENQ, et al. Research progress of forest tree species identification based on remote sensing technology[J]. Journal of Northwest Forestry University, 2021, 36(6): 220-229.(in Chinese). doi: 10.3969/j.issn.1001-7461.2021.06.31
[4] J F HUANG, X C ZHANG, Q C XIN et al. Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network. ISPRS Journal of Photogrammetry and Remote Sensing, 151, 91-105(2019).
[5] G BERTASIUS, L TORRESANI, S X YU et al. Convolutional random walk networks for semantic image segmentation, 858-866(2017).
[6] A GARCIA-GARCIA, S ORTS-ESCOLANO, S OPREA et al. A review on deep learning techniques applied to semantic segmentation. arXiv preprint(2017).
[7] T PANBOONYUEN, K JITKAJORNWANICH, S LAWAWIROJWONG et al. Road segmentation of remotely-sensed images using deep convolutional neural networks with landscape metrics and conditional random fields. Remote Sensing, 9, 680(2017).
[8] A R ELSHEHABY, L G E D TAHA. A new expert system module for building detection in urban areas using spectral information and LIDAR data. Applied Geomatics, 1, 97-110(2009).
[9] M PEDERGNANA, P R MARPU, M DALLA MURA et al. Classification of remote sensing optical and LiDAR data using extended attribute profiles. IEEE Journal of Selected Topics in Signal Processing, 6, 856-865(2012).
[10] C MALLET, F BRETAR. Full-waveform topographic lidar: state-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 1-16(2009).
[11] B RASTI, P GHAMISI, R GLOAGUEN. Hyperspectral and LiDAR fusion using extinction profiles and total variation component analysis. IEEE Transactions on Geoscience and Remote Sensing, 55, 3997-4007(2017).
[12] P GHAMISI, B RASTI, N YOKOYA et al. Multisource and multitemporal data fusion in remote sensing: a comprehensive review of the state of the art. IEEE Geoscience and Remote Sensing Magazine, 7, 6-39(2019).
[13] Y S CHEN, C Y LI, P GHAMISI et al. Deep fusion of remote sensing data for accurate classification. IEEE Geoscience and Remote Sensing Letters, 14, 1253-1257(2017).
[14] C DEBES, A MERENTITIS, R HEREMANS et al. Hyperspectral and LiDAR data fusion: outcome of the 2013 GRSS data fusion contest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2405-2418(2014).
[15] S PIRAMANAYAGAM, E SABER, W SCHWARTZKOPF et al. Supervised classification of multisensor remotely sensed images using a deep learning framework. Remote Sensing, 10, 1429(2018).
[16] H LI, P GHAMISI, U SOERGEL et al. Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks. Remote Sensing, 10, 1649(2018).
[17] M M ZHANG, W LI, Q DU et al. Feature extraction for classification of hyperspectral and LiDAR data using patch-to-patch CNN. IEEE Transactions on Cybernetics, 50, 100-111(2020).
[18] X D XU, W LI, Q RAN et al. Multisource remote sensing data classification based on convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 56, 937-949(2018).
[19] D F HONG, L R GAO, N YOKOYA et al. More diverse means better: multimodal deep learning meets remote-sensing imagery classification. IEEE Transactions on Geoscience and Remote Sensing, 59, 4340-4354(2021).
[20] 20赵传, 张保明, 余东行, 等. 利用迁移学习的机载激光雷达点云分类[J]. 光学 精密工程, 2019, 27(7): 1601-1612. doi: 10.3788/OPE.20192707.1601ZHAOC, ZHANGB M, YUD H, et al. Airborne LiDAR point cloud classification using transfer learning[J]. Opt. Precision Eng., 2019, 27(7): 1601-1612.(in Chinese). doi: 10.3788/OPE.20192707.1601
[21] A EITEL, J T SPRINGENBERG, L SPINELLO et al. Multimodal deep learning for robust RGB-D object recognition, 681-687(2015).
[22] C HAZIRBAS, L N MA, C DOMOKOS et al. FuseNet: incorporating depth into semantic segmentation via fusion-based CNN architecture, 213-228(2017).
[23] Z Y LIU, W ZHANG, P ZHAO. A cross-modal adaptive gated fusion generative adversarial network for RGB-D salient object detection. Neurocomputing, 387, 210-220(2020).
[24] W K ZHANG, H HUANG, M SCHMITZ et al. Effective fusion of multi-modal remote sensing data in a fully convolutional network for semantic labeling. Remote Sensing, 10, 52(2017).
[25] H HOSSEINPOUR, F SAMADZADEGAN, F D JAVAN. CMGFNet: a deep cross-modal gated fusion network for building extraction from very high-resolution remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 184, 96-115(2022).
[26] R ALSHEHHI, P R MARPU, W L WOON et al. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 139-149(2017).
[27] X Y HU, Y YUAN. Deep-learning-based classification for DTM extraction from ALS point cloud. Remote Sensing, 8, 730(2016).
[28] H SU, S MAJI, E KALOGERAKIS et al. Multi-view convolutional neural networks for 3D shape recognition, 945-953(2015).
[29] Z R WU, S R SONG, A KHOSLA et al. 3D ShapeNets: a deep representation for volumetric shapes, 1912-1920(2015).
[30] C R QI, H SU, K MO et al. PointNet: deep learning on point sets for 3D classification and segmentation, 77-85(2017).
[31] C R QI, L YI, H SU et al. PointNet++: deep hierarchical feature learning on point sets in a metric space. Advances in Neural Information Processing Systems, 30(2017).
[32] Y ZHOU, P SUN, Y ZHANG et al. End-to-end multi-view fusion for 3d object detection in lidar point clouds, 923-932(2020).
[33] K EIMADAWI, H RASHED, AEL EISALLAB et al. RGB and LiDAR fusion based 3D Semantic Segmentation for Autonomous Driving, 7-12(2019).
[34] F H ZHANG, J FANG et al. Deep FusionNet for point cloud semantic segmentation, 644-663(2020).
[35] Z LIU, H TANG, Y LIN et al. Point-Voxel CNN for Efficient 3D Deep Learning, 32(2019).
[36] 36王朝莹, 邢帅, 戴莫凡. 遥感影像与LiDAR点云多尺度深度特征融合的地物分类方法[J]. 测绘科学技术学报, 2021, 38(6): 604-610, 617. doi: 10.3969/j.issn.1673-6338.2021.06.009WANGZ Y, XINGS, DAIM F. A method of ground object classification based on multi-scale deep feature fusion of remote sensing image and LiDAR point cloud[J]. Journal of Geomatics Science and Technology, 2021, 38(6): 604-610, 617.(in Chinese). doi: 10.3969/j.issn.1673-6338.2021.06.009
[37] E WIDYANINGRUM, Q BAI, M K FAJARI et al. Airborne laser scanning point cloud classification using the DGCNN deep learning method. Remote Sensing, 13, 859(2021).
[38] V POLIYAPRAM, W M WANG, R NAKAMURA. A point-wise LiDAR and image multimodal fusion network (PMNet) for aerial point cloud 3D semantic segmentation. Remote Sensing, 11, 2961(2019).
[39] 39王庆超, 付光远, 汪洪桥, 等. 多核融合多尺度特征的高光谱影像地物分类[J]. 光学 精密工程, 2018, 26(4): 980-988. doi: 10.3788/ope.20182604.0980WANGQ C, FUG Y, WANGH Q, et al. Fusion of multi-scale feature using multiple kernel learning for hyperspectral image land cover classification[J]. Opt. Precision Eng., 2018, 26(4): 980-988.(in Chinese). doi: 10.3788/ope.20182604.0980
[40] 40戴莫凡, 邢帅, 徐青, 等. 多特征融合与几何卷积的机载LiDAR点云地物分类[J]. 中国图象图形学报, 2022, 27(2): 574-585. doi: 10.11834/jig.210555DAIM F, XINGS, XUQ, et al. Semantic segmentation of airborne LiDAR point cloud based on multi-feature fusion and geometric convolution[J]. Journal of Image and Graphics, 2022, 27(2): 574-585.(in Chinese). doi: 10.11834/jig.210555
[41] Y M DAI, F GIESEKE, S OEHMCKE et al. Attentional feature fusion, 3559-3568(2021).
[42] F ROTTENSTEINER, G SOHN, J JUNG et al. The isprs benchmark on urban object classification and 3d building reconstruction. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences I-3, 1, 293-298(2012).
[43] M JIANG, Y WU, T ZHAO et al. Pointsift: A sift-like network module for 3d point cloud semantic segmentation. arXiv preprint(2018).
[44] Y WANG, Y B SUN, Z W LIU et al. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 38, 1-12(2019).
[45] Q Y HU, B YANG, L H XIE et al. RandLA-net: efficient semantic segmentation of large-scale point clouds, 11105-11114(2020).