• Acta Photonica Sinica
  • Vol. 50, Issue 7, 203 (2021)
Jingjing LIU, Kailing LI, Zixiang XU, Jingzhe PANG, Jun WANG, Qing YAN, and Dengxin HUA*
Author Affiliations
  • School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an710048, China
  • show less
    DOI: 10.3788/gzxb20215007.0701001 Cite this Article
    Jingjing LIU, Kailing LI, Zixiang XU, Jingzhe PANG, Jun WANG, Qing YAN, Dengxin HUA. Atmosphere Temperature Profiling and a Fusion Algorithm Based on Polarization HSRL and MWR[J]. Acta Photonica Sinica, 2021, 50(7): 203 Copy Citation Text show less
    References

    [1] Yansong BAO, Cheng QIAN, Jinzhong MIN等. Study of retrieving 0~10 km atmospheric temperature and humidity profiles by Ground-based microwave radiometer data. Journal of Tropical Meteorology, 32, 163-171(2016).

    [2] J LI, J OTKIN, T J SCHMIT et al. Warning information in a preconvection environment from the geostationary advanced infrared sounding system: a simulation study using the IHOP case. Journal of Applied Meteorology and Climatology, 50, 776-783(2011).

    [3] L M MILOSHEVICH, H VÖMEL, D N WHITEMAN et al. Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. Journal of Geophysical Research-Atmosphere, 111, d09-10(2006).

    [4] F ANDREAS, P BEMHARD. Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer. Atmospheric Measurement Techniques, 10, 3325-3344(2017).

    [5] W E WESTWATER. An analysis of the correction of range errors due to atmospheric refraction by microwave radiometric techniques(1967).

    [6] E R WESTWATER, W ZHENHUI, N C GRODY et al. Remote sensing of temperature profiles from a combination of observations from the satellite-based microwave sounding unit and the ground-based profiler. Journal of Atmospheric and Oceanic Technology, 2, 97-109(1985).

    [7] Jianping HUANG, Min HE, Hongru YAN等. A study of liquid water path and precipitable water vapor in lanzhou area using ground-based microwave radiometer. Chinese Journal of Atmospheric Sciences, 34, 548-558(2010).

    [8] G XU, R WARE, W ZHANG et al. Effect of off-zenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy. Atmospheric Research, 140-141, 85-94(2014).

    [9] F SOLJEIM, J R GODWIN, E R WESTWATER et al. Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods. Radio Science, 33, 393-404(1998).

    [10] E R WESTWATER, S CREWELL, C MÄTZLER et al. Principles of surface-based microwave and millimeter wave radiometric remote sensing of the troposphere. Quaderni Della Società Italiana Elettromagnetismo, 1, 50-90(2005).

    [11] D P GIROLAMO, R MARCHESE, D N WHITEMAN et al. Rotational Raman lidar measurements of atmospherictemperature in the UV. Geophysical Research Letters, 31(2004).

    [12] P KECKHUT, M L CHANIN, A HAUCHECORNE. Stratosphere temperature measurement using Raman lidar. Applied Optics, 29, 5182-5186(1990).

    [13] C Y SHE, R J ALVAREZ, L M CALDWELL et al. High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles. Optics Letters, 17, 541-543(1992).

    [14] J W HAIR. A high spectral resolution lidar at 532 nm for simultaneous measurement of atmospheric state and aerosol profiles using iodine vapor filters. Ph.D. Thesis(1998).

    [15] D LIU, C HOSTETLER, I MILLER et al. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar. Optical Express, 20, 1406-1420(2012).

    [16] Z T CHENG, D LIU, Y P ZHANG et al. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: practical development. Optical Express, 24, 7232-7245(2016).

    [17] D D TUMER, J E M GOLDSMITH. Twenty-four-hour raman lidar water vapor measurements during the atmospheric radiation measurement program's 1996 and 1997 water vapor intensive observation periods. Journal of Atmospheric and Oceanic Technology, 16, 1062-1076(1999).

    [18] I MATTIS, A ANSMANN, D ALTHAUSEN et al. Relative-humidity profiling in the troposphere with a Raman lidar. Applied Optics, 41, 6451-62(2002).

    [19] F MADONNA, A AMODEO, A BOSELLI et al. CIAO: the CNR-IMAA advanced observatory for atmospheric research. Atmospheric Measurement Techniques, 4, 1191-1208(2011).

    [20] A FOTH, H BAARS, P DI GIROLAMO et al. Water vapour profiles from Raman lidar automatically calibrated by microwave radiometer data during HOPE. Atmospheric Chemistry and Physics, 15, 7753-7763(2015).

    [21] Lingbing BU, Honglin PAN, K R KUMAR. LIDAR and Millimeter-Wave Cloud RADAR (MWCR) techniques for joint observations of cirrus in Shouxian (32.56°N, 116.78°E). Journal of Atmospheric and Solar-Terrestrial Physics, 148, 64-73(2016).

    [22] Dengxin HUA, M UCHIDA, T KOBAYASHI. Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere. Applied Optics, 44, 1305-1314(2005).

    [23] J H CHURNSIDE, T A STERMITE, J A SCHROEDER. Temperature profiling with neural network inversion of microwave radiometer data. Journal of Atmospheric and Oceanic Technology, 11, 105-109(1994).

    [24] A HAEFELE, E M BARRAS, O MAIER et al. Composite temperature profiles from Raman lidar and microwave radiometer. Italien(2012).

    Jingjing LIU, Kailing LI, Zixiang XU, Jingzhe PANG, Jun WANG, Qing YAN, Dengxin HUA. Atmosphere Temperature Profiling and a Fusion Algorithm Based on Polarization HSRL and MWR[J]. Acta Photonica Sinica, 2021, 50(7): 203
    Download Citation