• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 20, Issue 11, 1113 (2022)
DENG Xinxin1、2, LIU Bingwei2、3, LIU Jingbo2, ZHANG Qinnan2, HE Xiaoyong2, LING Dongxiong2, LIU Dongfeng1, and WEI Dongshan22
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.11805/tkyda2021343 Cite this Article
    DENG Xinxin, LIU Bingwei, LIU Jingbo, ZHANG Qinnan, HE Xiaoyong, LING Dongxiong, LIU Dongfeng, WEI Dongshan2. Research progress of terahertz metamaterials in biological detection applications[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(11): 1113 Copy Citation Text show less
    References

    [1] WALLACE V P,FITZGERALD A J,SHANKAR S,et al. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo[J]. British Journal of Dermatology, 2015,151(2):424-432.

    [2] KALTENECKER K J. Gouy phase shift of a tightly focused, radially polarized beam[J]. Optica, 2016:35-41.

    [3] ISLAM R,HASANUZZAMAN G,HABIB M S,et al. Low-loss rotated porous core hexagonal single-mode fiber in THz regime[J]. Optical Fiber Technology, 2015(24):38-43.

    [4] CHENG Y, WANG Y, NIU Y, et al. Concealed object enhancement using multi-polarization information for passive millimeter and terahertz wave security screening[J]. Optics Express, 2020,28(5):6350-6366.

    [5] IBRAHIM M E, HEADLAND D, WITHAYACHUMNANKUL W, et al. Nondestructive testing of defects in polymer-matrix composite materials for marine applications using terahertz waves[J]. Journal of Nondestructive Evaluation, 2021,40(2):1-11.

    [6] MITSUHASHI R, MURATE K, NIIJIMA S, et al. Low-cost terahertz tag identifiable through shielding materials using deep learning[J]. Optics Express, 2020,28(3):3517-3527.

    [7] PETROV V,MOLTCHANOV D,KOUCHERYAVY Y,et al. Capacity and outage of terahertz communications with user micro-mobility and beam misalignment[J]. IEEE Transactions on Vehicular Technology, 2020(99):1-1.

    [8] TEKBYK K, EKTI A R, KURT G K, et al. Modeling and analysis of short distance sub-terahertz communication channel via mixture of Gamma distribution[J]. IEEE Transactions on Vehicular Technology, 2021,70(4):2945-2954.

    [9] NAGATSUMA T,DUCOURNAU G,RENAUD C C . Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 2016,10(6):371-379.

    [10] SEEDS A J,SHAMS H,FICE M J,et al. TeraHertz photonics for wireless communications[J]. Journal of Lightwave Technology, 2015(3):33.

    [11] ROUHI K, RAJABALIPANAH H, ABDOLALI A. Real-time and broadband terahertz wave scattering manipulation via polarization-insensitive conformal graphene-based coding metasurfaces[J]. Annalen Der Physik, 2018,530(4):1700310.

    [12] JIANG Y S,NIE M Y,ZHANG C H,et al. Terahertz scattering property for the coated object of rough surface[J]. Acta Physica Sinica(Chinese Edition), 2015,64(2):024101.

    [14] GIUSEPPE Trainiti, XIA Yiwei, MARCONI Jacopo, et al. Time-periodic stiffness modulation in elastic metamaterials for selective wave filtering:theory and experiment[J]. Physical Review Letters, 2019,122(12):124301.

    [15] ZHENG X,ZHENG L,LI X,et al. Origin of strain-induced resonances in flexible terahertz metamaterials[J]. Chinese Physics B, 2016,25(5):57802.

    [16] LING F, ZHONG Z, ZHANG Y, et al. Broadband negative-refractive index terahertz metamaterial with optically tunable equivalent-energy level[J]. Optics Express, 2018,26(23):30085.

    [17] SHI C,ZANG X F,WANG Y Q,et al. A polarization-independent broadband terahertz absorber[J]. Applied Physics Letters, 2014, 105(3):031104-1-4.

    [18] JAHANI S,JACOB Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 2016,11(1):23-36.

    [20] WANG B X, XIE Q, DONG G, et al. Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber[J]. IEEE Photonics Technology Letters, 2018,30(12):1115-1118.

    [23] SHIRAISHI K,MURAKI K. Metal-film subwavelength-grating polarizer with low insertion losses and high extinction ratios in the terahertz region[J]. Optics Express, 2015,23(13):16676-16681.

    [25] SMOLYANSKAYA O A,CHERNOMYRDIN N V,KONOVKO A A,et al. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids[J]. Progress in Quantum Electronics, 2018(62):1-77.

    [26] LEE S H,CHOE J H,KIM C,et al. Graphene assisted terahertz metamaterials for sensitive bio-sensing[J]. Sensors and Actuators B Chemical, 2020(310):127841.

    [27] GORYACHUK A. Gastrointestinal cancer diagnostics by terahertz time domain spectroscopy[C]// IEEE International Symposium on Medical Measurements and Applications. Rochester,MN:IEEE, 2017:134-137.

    [28] YANG X, WEI D, YAN S, et al. Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy[J]. Journal of Biophotonics, 2016:1050-1058.

    [29] XIN Y, MY A, ZHANG Z B, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019(126):485-492.

    [30] JI Y B. Terahertz spectroscopic imaging and properties of gastrointestinal tract in a rat model[J]. Biomedical Optics Express, 2014,5(12):4162-4170.

    [31] DRISCOLL T,ANDREEV G O,BASOV D N,et al. Tuned permeability in terahertz split-ring resonators for devices and sensors [J]. Applied Physics Letters, 2007,91(6):062511-1-3.

    [32] PADILLA W J, TAYLOR A J, HIGHSTRETE C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Physical Review Letters, 2006,96(10):107401.

    [33] HU F, GUO E, XU X, et al. Real-timely monitoring the interaction between bovine serum albumin and drugs in aqueous with terahertz metamaterial biosensor[J]. Optics Communications, 2016:62-67.

    [34] XU X, WU Y, HE T, et al Metamaterials-based terahertz sensor for quick diagnosis of early lung cancer[J]. Chinese Optics Letters, 2017,11(5):88-90.

    [35] ZHANG J,MU N,LIU L,et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency[J]. Biosensors and Bioelectronics, 2021(185):113241.

    [36] Al-NAIB I. Biomedical sensing with conductively coupled terahertz metamaterial resonators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017(99):1-1.

    [37] TAO H, STRIKWERDA A C, LIU M, et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications[J]. Applied Physics Letters, 2010,97(26):261909.

    [38] XIN Y, MY A, ZHANG Z B, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019(126):485-492.

    [39] YANG M,LIANG L,ZHANG Z,et al. Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells[J]. Optics Express, 2019,27(14):19520.

    [40] YANG Z,MAEDA R. A world-to-chip socket for microfluidic prototype development[J]. Electrophoresis, 2015,23(20):3474-3478.

    [41] RUI Z, CHEN Q, KAI L, et al. Terahertz microfluidic metamaterial biosensor for sensitive detection of small volume liquid samples[J]. IEEE Transactions on Terahertz Science and Technology, 2019(99):1-1.

    [42] HUANG,HSU,TANG,et al. Application of a terahertz system combined with an X-shaped metamaterial microfluidic cartridge [J]. Micromachines, 2020,11(1):74.

    [43] ASL Y A, YAMINI Y, SEIDI S. Development of a microfluidic-chip system for liquid-phase microextraction based on two immiscible organic solvents for the extraction and preconcentration of some hormonal drugs[J]. Talanta, 2016:592-599.

    [44] YANG Jieping,DENG Hu,XIONG Zhonggang,et al. Terahertz sensor based on a three-dimensional double I-type metamaterial integrated microfluidic channel[J]. Applied Optics, 2021,60(13):3816-3822.

    [45] GENG Z, ZHANG X, FAN Z, et al. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage[J]. 2017,7(1):16378.

    [47] HE Xiaoyong. Tunable terahertz graphene metamaterials[J]. Carbon, 2015(82):229-237.

    [48] TVHAB C, BST A, BXK A, et al. Controlling the absorption strength in bidirectional terahertz metamaterial absorbers with patterned graphene-ScienceDirect[J]. Computational Materials Science, 2019(166):276-281.

    [49] XIAO S,WANG T,JIANG X,et al. Strong interaction between graphene layer and Fano resonance in terahertz metamaterials[J]. Journal of Physics D Applied Physics, 2017,50(19):195101.

    [50] CHEN Shuyu, WANG Junxing, WEI Dequan, et al. High-sensitivity biosensor based on C-type terahertz metamaterials[J]. Electronic Components and Materials, 2020,39(4):44-50.

    [51] LEE S H,CHOE J H,KIM C,et al. Graphene assisted terahertz metamaterials for sensitive bio-sensing[J]. Sensors and Actuators B Chemical, 2020(310):127841.

    [52] HU Y, LI F, HAN D, et al. Biocompatible graphene for bioanalytical applications[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.

    [53] LIM,CHAEHYUN,LEE,et al. Broadband characterization of charge carrier transfer of hybrid graphene-deoxyribonucleic acid junctions[J]. Carbon:An International Journal Sponsored by the American Carbon Society, 2018(130):525-531.

    [54] PARK H R,AHN K J,HAN S,et al. Colossal absorption of molecules inside single terahertz nanoantennas[J]. Nano Letters, 2013, 13(4):1782-1786.

    [55] LEE D K, KANG J H, LEE J S, et al. Highly sensitive and selective sugar detection by terahertz nano-antennas[J]. Scientific Reports, 2015(5):15459.

    CLP Journals

    [1]  AOJunhao, RAO Zhiming, LI Chao. Dual-narrowband THz absorber based on vanadium dioxide metamaterial[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(12): 1410

    DENG Xinxin, LIU Bingwei, LIU Jingbo, ZHANG Qinnan, HE Xiaoyong, LING Dongxiong, LIU Dongfeng, WEI Dongshan2. Research progress of terahertz metamaterials in biological detection applications[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(11): 1113
    Download Citation