• Acta Physica Sinica
  • Vol. 68, Issue 21, 217501-1 (2019)
Guo-Qiang Liu1, Ya-Jiao Ke2, Kong-Bin Zhang1, Xiong He1, Feng Luo1, Bin He1, and Zhi-Gang Sun1、*
Author Affiliations
  • 1State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • 2College of Science, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.7498/aps.68.20191139 Cite this Article
    Guo-Qiang Liu, Ya-Jiao Ke, Kong-Bin Zhang, Xiong He, Feng Luo, Bin He, Zhi-Gang Sun. Research progress of physical model of full-solid-state magnetic refrigeration system[J]. Acta Physica Sinica, 2019, 68(21): 217501-1 Copy Citation Text show less
    (a) Operation mechanism of Peltier element as thermal diode; (b) the operation mechanism of kH element as thermal diode; (c) the operation mechanism of HTCM element.(a) Peltier元件作为热二极管的工作机制; (b) kH元件作为热二极管的工作机制; (c) HTCM元件工作机制
    Fig. 1. (a) Operation mechanism of Peltier element as thermal diode; (b) the operation mechanism of kH element as thermal diode; (c) the operation mechanism of HTCM element. (a) Peltier元件作为热二极管的工作机制; (b) kH元件作为热二极管的工作机制; (c) HTCM元件工作机制
    (a) Schematic diagram of the full solid state MR model based on a thermal diode[21]; (b) comparison of maximum SCP and exergy efficiency between MR system with thermal diode and parallel-plate AMR at different temperature spans and different frequencies[26].(a) 基于热二极管的全固态MR模型结构示意图[21]; (b) 带有热二极管的MR系统与平行板AMR在不同温跨和不同频率下最大SCP和㶲效率的比较[26]
    Fig. 2. (a) Schematic diagram of the full solid state MR model based on a thermal diode[21]; (b) comparison of maximum SCP and exergy efficiency between MR system with thermal diode and parallel-plate AMR at different temperature spans and different frequencies[26]. (a) 基于热二极管的全固态MR模型结构示意图[21]; (b) 带有热二极管的MR系统与平行板AMR在不同温跨和不同频率下最大SCP和㶲效率的比较[26]
    (a) Schematic diagram of the full solid state MR system model[28]; (b) temperature distribution over the length of the device[28].(a)全固态MR系统模型结构示意图[28]; (b)器件长度方上的温度分布[28]
    Fig. 3. (a) Schematic diagram of the full solid state MR system model[28]; (b) temperature distribution over the length of the device[28]. (a)全固态MR系统模型结构示意图[28]; (b)器件长度方上的温度分布[28]
    (a) Schematic diagram of a full solid state MR model based on thermal switch[30]; (b) operating principle[23]; (c) variation of COP and SCP with different current[23]; (d) variation of COP and SCP with the length of Peltier element [23].(a)基于热二极管的全固态MR模型示意图[30]; (b)工作原理[23]; (c)不同电流下COP和SCP的变化[23]; (d) Peltier元件不同长度下COP和SCP的变化[23]
    Fig. 4. (a) Schematic diagram of a full solid state MR model based on thermal switch[30]; (b) operating principle[23]; (c) variation of COP and SCP with different current[23]; (d) variation of COP and SCP with the length of Peltier element [23]. (a)基于热二极管的全固态MR模型示意图[30]; (b)工作原理[23]; (c)不同电流下COP和SCP的变化[23]; (d) Peltier元件不同长度下COP和SCP的变化[23]
    (a) Schematic diagram of the full solid state magnetic refrigeration system[24]; (b) MUR cycle principle[31]; (c) Gd-only[31]; (d) parallel sheets[31]; (e) topology optimization structure[31]; (f) experiment setup[31]; (g) variation of maximum SCP with different Peltier supply voltages[31]; (h) variation of Peltier COP and temperature difference with different rotating speeds[31].(a) 全固态MR系统示意图[24]; (b) MUR循环原理[31]; (c) 仅Gd[31]; (d) 平行板[31]; (e) 拓扑优化结构[31]; (f) 实验设置[31]; (g)最大SCP随Peltier电源电压的变化[31]; (h) Peltier COP和温差随转速的变化[31]
    Fig. 5. (a) Schematic diagram of the full solid state magnetic refrigeration system[24]; (b) MUR cycle principle[31]; (c) Gd-only[31]; (d) parallel sheets[31]; (e) topology optimization structure[31]; (f) experiment setup[31]; (g) variation of maximum SCP with different Peltier supply voltages[31]; (h) variation of Peltier COP and temperature difference with different rotating speeds[31]. (a) 全固态MR系统示意图[24]; (b) MUR循环原理[31]; (c) 仅Gd[31]; (d) 平行板[31]; (e) 拓扑优化结构[31]; (f) 实验设置[31]; (g)最大SCP随Peltier电源电压的变化[31]; (h) Peltier COP和温差随转速的变化[31]
    (a) A full solid state magnetic refrigeration model based on kH element and magnetic Brayton cycle[32]; (b) variation of SCP with operating frequency at different operating temperatures[32]; (c) maximum SCP and COP as a function of temperature[32].(a) 基于kH元件和磁Brayton循环的全固态MR模型[32]; (b) 不同工作温度下SCP随工作频率的变化[32]; (c)最大SCP和COP随温度的变化[32]
    Fig. 6. (a) A full solid state magnetic refrigeration model based on kH element and magnetic Brayton cycle[32]; (b) variation of SCP with operating frequency at different operating temperatures[32]; (c) maximum SCP and COP as a function of temperature[32]. (a) 基于kH元件和磁Brayton循环的全固态MR模型[32]; (b) 不同工作温度下SCP随工作频率的变化[32]; (c)最大SCP和COP随温度的变化[32]
    (a) Working mechanism of the cascaded full solid state magnetic refrigeration system[33]; (b) variation of temperature span with operating temperature for different MCM components[33]; (c) dependence of the temperature span on the operating frequency for different thermal conductivities of the MCM[34].(a) 级联全固态MR系统的工作机制[33]; (b) 不同MCM元件数量下温跨随工作温度的变化[33]; (c) 不同热导率的MCM下温跨与工作频率的关系[34]
    Fig. 7. (a) Working mechanism of the cascaded full solid state magnetic refrigeration system[33]; (b) variation of temperature span with operating temperature for different MCM components[33]; (c) dependence of the temperature span on the operating frequency for different thermal conductivities of the MCM[34]. (a) 级联全固态MR系统的工作机制[33]; (b) 不同MCM元件数量下温跨随工作温度的变化[33]; (c) 不同热导率的MCM下温跨与工作频率的关系[34]
    (a) Variation of temperature span with rotating speed at different lattice numbers[24]; (b) variation of maximum SCP with rotating speed at different temperature spans and lattice numbers[24]; (c) variation of maximum SCP and COP with different rotating speeds at 32 lattices[24].(a)不同网格数下温跨与转速的关系[24]; (b)不同温跨网格数下最大SCP与转速的关系[24]; (c) 32网格下最大SCP和COP与转速的关系[24]
    Fig. 8. (a) Variation of temperature span with rotating speed at different lattice numbers[24]; (b) variation of maximum SCP with rotating speed at different temperature spans and lattice numbers[24]; (c) variation of maximum SCP and COP with different rotating speeds at 32 lattices[24]. (a)不同网格数下温跨与转速的关系[24]; (b)不同温跨网格数下最大SCP与转速的关系[24]; (c) 32网格下最大SCP和COP与转速的关系[24]
    配置温跨/K最大SCP/W·kg–1增加 百分比/%
    铜块Peltier元件
    平行板567.6133.898
    1026.164.9149
    拓扑优 化结构 588.5160.982
    1035.779.8124
    Table 1.

    Maximum SCP comparison between MR with copper blocks and MR with Peltier elements under a 3 V supply voltage[31].

    3 V电压下, 带有铜块的MR和带有Peltier元件的MR的最大SCP比较[31]

    类型磁工质传热介质工作频率/Hz温跨/KSCP/W·kg–1COP参考文献
    全固态MR准2D全固态MRGdPeltier元件0—2255—151 × 104[21]
    全固态MRGdPeltier元件10501.5 × 1042.8[27]
    2D全固态MRGdPeltier元件205.3—6.5[28]
    全固态MRGdPeltier元件20—200604.0[30]
    1D全固态MRGdPeltier元件50.96—9.21[23]
    准2D全固态MRGdPeltier元件1079.8[31]
    1D全固态MRGdkH元件 0—5002.51.5[32]
    1D全固态MRGdkH元件 11.54.0[33]
    准2D全固态MRGdCu块5—50.92.6—105.81.5—4.2[24]
    传统AMR1D AMRGd151.49—5.27[42]
    2D AMRGd35.4[43]
    1D AMRGd0.125612.16[44]
    AMR/旋转床Gd水+乙二醇0~10< 18.9[45]
    2D AMRGd水+乙二醇0.7510.260.593.1[46]
    2D AMRGd1.514.5~2[47]
    AMR/旋转床Gd水+乙二醇0.87.10.54[48]
    1D AMRGd水+乙二醇0.3—10201007.6—11.2[49]
    2D AMR${\rm Gd_5(Si}_x{\rm Ge}_{1-x})_4 $1.25~10—16~5[50]
    AMR/平行板床${\rm MnFeP}_{1-x}{\rm As}_x $水+乙二醇0.832[51]
    1D AMRLaFeSiMnHy水+乙二醇0.1519.812.4[52]
    Table 2. Comparison of main performances between full solid state MR model and traditional AMR model.
    Guo-Qiang Liu, Ya-Jiao Ke, Kong-Bin Zhang, Xiong He, Feng Luo, Bin He, Zhi-Gang Sun. Research progress of physical model of full-solid-state magnetic refrigeration system[J]. Acta Physica Sinica, 2019, 68(21): 217501-1
    Download Citation