• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 20, Issue 1, 90 (2022)
ZHANG Tao1、2, ZHAO Bangjian1、2, TAN Jun1, ZHAO Yongjiang1、2, TAN Han1、2, XUE Renjun1、2, and DANG Haizheng1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.11805/tkyda2020541 Cite this Article
    ZHANG Tao, ZHAO Bangjian, TAN Jun, ZHAO Yongjiang, TAN Han, XUE Renjun, DANG Haizheng. Thermodynamic optimization on the 1-2 K hybrid cryocooler used for cooling Superconducting Nanowire Single Photon Detectors[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(1): 90 Copy Citation Text show less
    References

    [1] YIN J,CAO Y,LI Y H,et al. Satellite-based entanglement distribution over 1 200 kilometers[J]. Science, 2017(356):1140–1144.

    [2] YIN J,LI Y H,LIAO S K,et al. Entanglement-based secure quantum cryptography over 1 120 kilometres[J]. Nature, 2020(582):501–505.

    [4] ZHANG W J,YOU L X,LI H,et al. Superconducting nanowire single photon detector with efficiency over 90% at 1 550 nm wavelength operational at compact cryocooler temperature[J]. Science China Physics,Mechanics & Astronomy, 2017,60(12):120314.

    [5] RADEBAUGH R. Development of the pulse tube refrigerator as an efficient and reliable cryocooler[C]// Proceedings of Institute of Refrigeration. London:[s.n.], 2000.

    [6] KITTEL P. Enthalpy,entropy,and exergy flow losses in pulse tube cryocoolers[C]// 13th International Cryocooler Conference.New Orleans,Louisiana:Springer, 2005:343–352.

    [7] DANG H Z. Development of high performance moving-coil linear compressors for space stirling-type pulse tube cryocoolers[J].Cryogenics, 2015(68):1–18.

    [8] NAST T,OLSON J,CHAMPAGNE P,et al. Development of a 4.5 K pulse tube cryocooler for superconducting electronics[J].AIP Conference Proceedings, 2008,985(1):881-886.

    [9] DANG H Z,ZHA R,TAN J,et al. Investigations on a 3.3 K four-stage stirling-type pulse tube cryocooler. Part A:theoretical analyses and modeling[J]. Cryogenics, 2020(105):103014.

    [10] DANG H Z,ZHA R,TAN J,et al. Investigations on a 3.3 K four-stage stirling-type pulse tube cryocooler. Part B:experimental verifications[J]. Cryogenics, 2020(105):103015.

    [11] PETACH M,CASEMENT S,MICHAELIAN M,et al. Mechanical cooler for IXO and other space based sensors[J]. Bulletin of the American Astronomical Society, 2009(41):347.

    [12] RAAB J,TWARD E. Northrop grumman aerospace systems cryocooler overview[J]. Cryogenics, 2010,50(9):572-581.

    [13] DANG H Z,ZHANG T,ZHA R,et al. Development of 2 K space cryocoolers for cooling the superconducting nanowire single photon detector[J]. IEEE Transactions on Applied Superconductivity, 2019,29(5). doi:10.1109/TASC.2019. 2902770.

    [14] JONES B G,RAMSAY D W. Qualification of a 4 K mechanical cooler for space applications[C]// 8th International Cryocooler Conference. USA:Springer, 1995:525-535.

    [15] SUGITA H,SATO Y,NAKAGAWA T,et al. Cryogenic system for the infrared space telescope SPICA[C]// Proceeding of SPIE. 2008(7010):1-9.

    [16] NARASAKI K,TSUNEMATSU S,OOTSUKA K,et al. Development of 1 K-class mechanical cooler for SPICA[J]. Cryogenics, 2004,44(6-8):375-381.

    [17] KOTSUBO V,RADEBAUGH R,HENDERSHOTT P,et al. Compact 2K cooling system for superconducting nanowire single photon detectors[J]. IEEE Transactions on Applied Superconductivity, 2017,27(4):1-5.

    ZHANG Tao, ZHAO Bangjian, TAN Jun, ZHAO Yongjiang, TAN Han, XUE Renjun, DANG Haizheng. Thermodynamic optimization on the 1-2 K hybrid cryocooler used for cooling Superconducting Nanowire Single Photon Detectors[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(1): 90
    Download Citation