• High Power Laser and Particle Beams
  • Vol. 34, Issue 5, 053002 (2022)
Minglang Hu, Shihua Zhou, Liping Yan, and Xiang Zhao*
Author Affiliations
  • College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
  • show less
    DOI: 10.11884/HPLPB202234.220026 Cite this Article
    Minglang Hu, Shihua Zhou, Liping Yan, Xiang Zhao. Development and validation of electromagnetic coupling solver for electrically large-sized cavity structure based on power balance method[J]. High Power Laser and Particle Beams, 2022, 34(5): 053002 Copy Citation Text show less
    References

    [2] Kubík Z, Skála J. Shielding effectiveness measurement simulation of small perfated shielding enclosure using FEM[C]2015 IEEE 15th International Conference on Environment Electrical Engineering. 2015: 19831988.

    [3] Ali Khorrami M, Dehkhoda P, Mazandaran R M, et al. Fast shielding effectiveness calculation of metallic enclosures with apertures using a multiresolution method of moments technique[J]. IEEE Transactions on Electromagnetic Compatibility, 52, 230-235(2010).

    [4] Mrdakovic B L, Kolundzija B M. Accurate analysis of electromagic shielding problems using MoM SIE method[C]2016 International Symposium on Antennas Propagation. 2016: 162163.

    [5] Lü Qilong, Lv Zhiqing, Xue Zhenhao, et al. Research on shielding effectiveness of spacecraft shielding box to electromagic pulse[C]2020 International Conference on Microwave Millimeter Wave Technology. 2020: 13.

    [6] Campione S, Warne L K, Reines I C, et al. Modeling experiments of highquality fact cavity shielding effectiveness[C]2019 International Applied Computational Electromagics Society Symposium. 2019: 12.

    [8] Li Fulin, Han Jihong, Zhang Chang. Study on the influence of PCB parameters on the shielding effectiveness of metal cavity with holes[C]2019 IEEE 3rd Infmation Technology, wking, Electronic Automation Control Conference. 2019: 383387.

    [9] Radivojevi M V, Rupi S, Alilovi V, et al. The shielding effectiveness measurements of a rectangular enclosure perfated with slot aperture[C]2017 International Conference on Smart Systems Technologies. 2017: 121126.

    [10] Rabat A, Bonnet P, Drissi K E K, et al. Analytical formulation for shielding effectiveness of a lossy enclosure containing apertures[J]. IEEE Transactions on Electromagnetic Compatibility, 60, 1384-1392(2018).

    [11] Holl R, John R S. Statistical electromagics[M]. Boca Raton: CRC Press, 1999.

    [16] Hill D A, Ma M T, Ondrejka A R, et al. Aperture excitation of electrically large, lossy cavities[J]. IEEE Transactions on Electromagnetic Compatibility, 36, 169-178(1994).

    [17] Junqua I, Parmantier J P, Issac F. A network formulation of the power balance method for high-frequency coupling[J]. Electromagnetics, 25, 603-622(2005).

    [19] Flintoftid. AEGPWB: an open source electromagic power balance toolbox solver[DBOL]. [20160518]. https:github.comflintoftidaegpwb.

    [20] Bremner P G, Bahadzadeh M, West J C, et al. Statistical field model f perfmance of localized RF absption blankets in a payload fairing[C]2021 IEEE International Joint EMCSIPI EMC Europe Symposium. 2021: 136141.

    [21] Pazos J J, Phillips J, Miller E, et al. Estimating fields in spacecraft cavities: experimental validation of finitedifference timedomain power balance computational tools[C]2021 IEEE International Joint EMCSIPI EMC Europe Symposium. 2021: 798803.

    [22] Junqua I, Parmantier J P, Ridel M. Modeling of high frequency coupling inside oversized structures by asymptotic PWB methods[C]2011 International Conference on Electromagics in Advanced Applications. 2011: 6871.

    CLP Journals

    [1] Zhihan He, Juting Hong, Liping Yan, Xiang Zhao. Modeling and application of electromagnetic coupling cross section of building walls[J]. High Power Laser and Particle Beams, 2023, 35(5): 053006

    Minglang Hu, Shihua Zhou, Liping Yan, Xiang Zhao. Development and validation of electromagnetic coupling solver for electrically large-sized cavity structure based on power balance method[J]. High Power Laser and Particle Beams, 2022, 34(5): 053002
    Download Citation