• Acta Photonica Sinica
  • Vol. 51, Issue 1, 0151110 (2022)
Dina MA1, Hua CHENG1, Jianguo TIAN1, and Shuqi CHEN1、2、3、*
Author Affiliations
  • 1The Key Laboratory of Weak Light Nonlinear Photonics,Ministry of Education,Renewable Energy Conversion and Storage Center,School of Physics,TEDA Institute of Applied Physics,Nankai University,Tianjin 300071,China
  • 2Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China
  • 3Collaborative Innovation Center of Light Manipulations and Applications,Shandong Normal University,Jinan 250358,China
  • show less
    DOI: 10.3788/gzxb20225101.0151110 Cite this Article
    Dina MA, Hua CHENG, Jianguo TIAN, Shuqi CHEN. Inverse Design Methods and Applications of Photonics Devices(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151110 Copy Citation Text show less
    References

    [1] L LIU, X ZHANG, M KENNEY et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Advanced Materials, 26, 5031-5036(2014).

    [2] A ARBABI, Y HORIE, M BAGHERI et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 10, 937-943(2015).

    [3] Q WEI, B SAIN, Y WANG et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Letters, 19, 8964-8971(2019).

    [4] W DAI, Y WANG, R LI et al. Achieving circularly polarized surface emitting perovskite microlasers with all-dielectric metasurfaces. ACS Nano, 14, 17063-17070(2020).

    [5] A F KAPLAN, T XU, L J GUO. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Applied Physics Letters, 99, 143111(2011).

    [6] Q SONG, A BARONI, P C WU et al. Broadband decoupling of intensity and polarization with vectorial Fourier metasurfaces. Nature Communications, 12, 3631(2021).

    [7] P YU, J LI, C TANG et al. Controllable optical activity with non-chiral plasmonic metasurfaces. Light:Science & Applications, 5, e16096(2016).

    [8] R UNNI, K YAO, Y ZHENG. Deep convolutional mixture density network for inverse design of layered photonic structures. ACS Photonics, 7, 2703-2712(2020).

    [9] A KAVEH, M SHAHROUZI. Simultaneous topology and size optimization of structures by genetic algorithm using minimal length chromosome. Engineering Computations, 23, 644-674(2006).

    [10] L CHAO, I Y KIM, J JESWIET. Conceptual and detailed design of an automotive engine cradle by using topology, shape, and size optimization. Structural & Multidisciplinary Optimization, 51, 547-564(2014).

    [11] A PAGANINI, S SARGHEINI, R HIPTMAIR et al. Shape optimization of microlenses. Optics Express, 23, 13099-13107(2015).

    [12] G ALLAIRE, E BONNETIER, G FRANCFORT et al. Shape optimization by the homogenization method. Numerische Mathematik, 76, 27-68(2002).

    [13] J S CHUN, M K KIM. Shape optimization of electromagnetic devices using immune algorithm. IEEE Transactions on Magnetics, 33, 1876-1879(1997).

    [14] Z LIN, V LIU, R PESTOURIE et al. Topology optimization of freeform large-area metasurfaces. Optics Express, 27, 15765-15775(2019).

    [15] Q WANG, A V CHUMAK, P PIRRO. Inverse-design magnonic devices. Nature Communications, 12, 2636(2021).

    [16] J S JENSEN, O SIGMUND. Topology optimization for nano-photonics. Laser & Photonics Reviews, 5, 308-321(2011).

    [17] A Y PIGGOTT, J LU, K G LAGOUDAKIS et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nature Photonics, 9, 374-377(2015).

    [18] K YAMAZOE, I MOCHI, K A GOLDBERG. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 31, B34-43(2014).

    [19] Z LIU, D ZHU, K T LEE et al. Compounding meta-atoms into metamolecules with hybrid artificial intelligence techniques. Advanced Materials, 32, e1904790(2020).

    [20] P I BOREL, H HARPØTHA, L H FRANDSEN et al. Topology optimization and fabrication of photonic crystal structures. Optics Express, 12, 1996-2001(2004).

    [21] R MATZEN, J S JENSEN, O SIGMUND. Topology optimization for transient response of photonic crystal structures. Journal of the Optical Society of America B, 27, 2040-2050(2010).

    [22] L FAN, J MEI. Acoustic metagrating circulators: nonreciprocal, robust, and tunable manipulation with unitary efficiency. Physical Review Applied, 15, 064002(2021).

    [23] D SELL, J YANG, E W WANG et al. Ultra-high-efficiency anomalous refraction with dielectric metasurfaces. ACS Photonics, 5, 2402-2407(2018).

    [24] T PHAN, D SELL, E W WANG et al. High-efficiency, large-area, topology-optimized metasurfaces. Light: Science & Applications, 8, 48(2019).

    [25] H LIANG, Q LIN, X XIE et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Letters, 18, 4460-4466(2018).

    [26] I MALKIEL, M MREJEN, A NAGLER et al. Plasmonic nanostructure design and characterization via deep learning. Light:Science & Applications, 7, 60(2018).

    [27] J LIU, D ZHANG, D YU et al. Machine learning powered ellipsometry. Light:Science & Applications, 10, 55(2021).

    [28] M V ZHELYEZNYAKOV, S BRUNTON, MAJUMDAR . A deep learning to accelerate scatterer-to-field mapping for inverse design of dielectric metasurfaces. ACS Photonics, 8, 481-488(2021).

    [29] C QIAN, B ZHENG, Y SHEN et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nature Photonics, 14, 383-390(2020).

    [30] C WU, H YU, S LEE et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nature Communications, 12, 96(2021).

    [31] C LIU, Q ZHANG, T J CUI. Deep learning of reflection phase predection for arbitrary coding metasurface atoms(2019).

    [32] T SHAN, X PAN, M LI et al. Coding programmable metasurfaces based on deep learning techniques. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 10, 114-125(2020).

    [33] S XU, X ZOU, B MA et al. Deep-learning-powered photonic analog-to-digital conversion. Light:Science & Applications, 8, 66(2019).

    [34] C H LIN, Y S CHEN, J T LIN et al. Automatic inverse design of high-performance beam-steering metasurfaces via genetic-type treeoptimization. Nano Letters, 21, 4981-4989(2021).

    [35] M ZHOU, D LIU, S W BELLING et al. Inverse design of metasurfaces based on coupled-mode theory and adjoint optimization. ACS Photonics, 8, 2265-2273(2021).

    [36] M MANSOUREE, A MCCLUNG, S SAMUDRALA et al. Large-scale parametrized metasurface design using adjoint optimization. ACS Photonics, 8, 455-463(2021).

    [37] L SU, R TRIVEDI, N V SAPRA et al. Fully-automated optimization of grating couplers. Optics Express, 26, 4023-4034(2018).

    [38] T FEICHTNER, O SELIG, M KIUNKE et al. Evolutionary optimization of optical antennas. Physical Review Letters, 109, 127701(2012).

    [39] C LIU, S A MAIER, G LI. Genetic-algorithm-aided meta-atom multiplication for improved absorption and coloration in nanophotonics. ACS Photonics, 7, 1716-1722(2020).

    [40] O SIGMUND, D N CHIGRIN. Topology optimization in nano-photonics(2009).

    [41] D SELL, J YANG, S DOSHAY et al. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Letters, 17, 3752-3757(2017).

    [42] R ROY, E SEVICK-MURACA. Truncated Newton's optimization scheme for absorption and fluorescence optical tomography: Part I theory and formulation. Optics Express, 4, 353-371(1999).

    [43] K SVANBERG. The method of moving asymptotes—a new method for structural optimization. International Journal for Numerical Methods in Engineering, 24, 359-373(1987).

    [44] Z LIU, X LIU, Z XIAO et al. Integrated nanophotonic wavelength router based on an intelligent algorithm. Optica, 6, 1367-1373(2019).

    [45] Q FENG, F YANG, X XU et al. Multi-objective optimization genetic algorithm for multi-point light focusing in wavefront shaping. Optics Express, 27, 36459-36473(2019).

    [46] G FUJII, Y AKIMOTO, M TAKAHASHI. Exploring optimal topology of thermal cloaks by CMA-ES. Applied Physics Letters, 112, 061108(2018).

    [47] Z JIN, S MEI, S CHEN et al. Complex inverse design of meta-optics by segmented hierarchical evolutionary algorithm. ACS Nano, 13, 821-829(2019).

    [48] D WANG, D TAN, L LIU. Particle swarm optimization algorithm: an overview. Soft Computing, 22, 387-408(2017).

    [49] J W YOON, K J LEE, W WU et al. Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings. Advanced Optical Materials, 2, 1206-1212(2014).

    [50] L van DIJK, J van de GROEP, L W VELDHUIZEN et al. Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells. ACS Photonics, 3, 685-691(2016).

    [51] H REN, W SHAO, Y LI et al. Three-dimensional vectorial holography based on machine learning inverse design. Science Advances, 6, eaaz4261(2020).

    [52] B ZHENG, R SUN, X TIAN et al. S-Net: A scalable convolutional neural network for JPEG compression artifact reduction. Journal of Electronic Imaging, 27, 043037(2018).

    [53] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (Cvpr), 770-778(2016).

    [54] S N XIE, R GIRSHICK, P DOLLAR et al. Aggregated residual transformations for deep neural networks, 5987-5995(2017).

    [55] Y WU, Y RIVENSON, Y ZHANG et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica, 5, 704-710(2018).

    [56] F WANG, Y BIAN, H WANG et al. Phase imaging with an untrained neural network. Light:Science & Applications, 9, 77(2020).

    [57] F WEN, J JIANG, J FAN. A robust freeform metasurface design based on progressively growing generative networks. ACS Photonics, 7, 2098-2104(2020).

    [58] D LIU, Y TAN, E KHORAM et al. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics, 5, 1365-1369(2018).

    [59] T ZHANG, J WANG, Q LIU et al. Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks. Photonics Research, 7, 368-380(2019).

    [60] Z LIU, D ZHU, S P RODRIGUES et al. Generative model for the inverse design of metasurfaces. Nano Letters, 18, 6570-6576(2018).

    [61] D ZHU, Z LIU, L RAJU et al. Building multifunctional metasystems via algorithmic construction. ACS Nano, 15, 2318-2326(2021).

    [62] K WEISS, T M KHOSHGOFTAAR, D D WANG. A survey of transfer learning. Journal of Big Data, 3, 1-40(2016).

    [63] H C SHIN, H R ROTH, M GAO et al. Deep convolutional neural networks for computer-aided detection: cnn architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, 35, 1285-1298(2016).

    [64] R ZHU, T QIU, J WANG et al. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning. Nature Communications, 12, 2974(2021).

    [65] C SZEGEDY, V VANHOUCKE, S IOFFE et al. Rethinking the inception architecture for computer vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818-2826(2016).

    [66] J JIANG, J A FAN. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Letters, 19, 5366-5372(2019).

    [67] B YANG, W LIU, Z LI et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces. Nano Letters, 19, 4221-4228(2019).

    [68] X LIU, Z HUANG, J ZANG. All-dielectric silicon nanoring metasurface for full-color printing. Nano Letters, 20, 8739-8744(2020).

    [69] S SUN, Z ZHOU, C ZHANG et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano, 11, 4445-4452(2017).

    [70] W GUO, Y LIU, T HAN. Ultra-broadband infrared metasurface absorber. Optics Express, 24, 20586-20592(2016).

    [71] N O LÄNK, V VERRE, P JOHANSSON et al. Large-scale silicon nanophotonic metasurfaces with polarization independent near-perfect absorption. Nano Letters, 17, 3054-3060(2017).

    [72] Y LI, J LIN, H GUO et al. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Advanced Optical Materials, 8, 1901548(2020).

    [73] Z LI, L STAN, D A CZAPLEWSKI et al. Broadband infrared binary-pattern metasurface absorbers with micro-genetic algorithm optimization. Optics Letters, 44, 114-117(2019).

    [74] W MA, F CHENG, Y LIU. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326-6334(2018).

    [75] L GAO, X LI, D LIU et al. A bidirectional deep neural network for accurate silicon color design. Advanced Materials, 31, e1905467(2019).

    [76] P DAI, Y WANG, Y HU et al. Accurate inverse design of Fabry–Perot-cavity-based color filters far beyond sRGB via a bidirectional artificial neural network. Photonics Research, 9, B236-B246(2021).

    [77] C YEUNG, R TSAI, B PHAM et al. Global inverse design across multiple photonic structure classes using generative deep learning. Advanced Optical Materials, 9, 2170079(2021).

    [78] S SO, Y YANG, T LEE et al. On-demand design of spectrally sensitive multiband absorbers using an artificial neural network. Photonics Research, 9, B153-B158(2021).

    [79] Q GUO, Z SHI, Y W HUANG et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proceedings of the National Academy of Sciences of the United States of America, 116, 22959-22965(2019).

    [80] A MARTINS, K LI, J LI et al. On metalenses with arbitrarily wide field of view. ACS Photonics, 7, 2073-2079(2020).

    [81] H REN, X FANG, J JANG et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nature Nanotechnology, 15, 948-955(2020).

    [82] X GUO, J ZHONG, B LI et al. Full-color holographic display and encryption with full-polarization degree of freedom. Advanced Materials, e2103192(2021).

    [83] Y BAO, J NI, C W QIU. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Advanced Materials, 32, e1905659(2020).

    [84] Z LIN, B GROEVER, F CAPASSO et al. Topology-optimized multilayered metaoptics. Physical Review Applied, 9, 044030(2018).

    [85] D XU, Y LUO, J LUO et al. Efficient design of a dielectric metasurface with transfer learning and genetic algorithm. Optical Materials Express, 11, 1852-1862(2021).

    [86] Q ZHANG, C LIU, X WAN et al. Machine‐learning designs of anisotropic digital coding metasurfaces. Advanced Theory and Simulations, 2, 1800132(2018).

    [87] M A ARBORE, A GALVANAUSKAS, D HARTER et al. Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate. Optics Letters, 22, 1341-1343(1997).

    [88] T F HEINZ, C K CHEN, D RICARD et al. Spectroscopy of molecular monolayers by resonant second-harmonic generation. Physical Review Letters, 48, 478-481(1982).

    [89] S ZASKE, A LENHARD, C A KESSLER et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Physical Review Letters, 109, 147404(2012).

    [90] Menglin MA, Zhi LI, Wenwei LIU et al. Optical information multiplexing with nonlinear coding metasurfaces. Laser & Photonics Reviews, 13, 1900045(2019).

    [91] Z LI, W LIU, G GENG et al. Multiplexed nondiffracting nonlinear metasurfaces. Advanced Functional Materials, 30, 1910744(2020).

    [92] Z Y OU, H J KIMBLE. Enhanced conversion efficiency for harmonic generation with double resonance. Optics Letters, 18, 1053(1993).

    [93] P MANDEL, M TLIDI. Transverse dynamics in cavity nonlinear optics (2000–2003). Journal of Optics B Quantum & Semiclassical Optics, 6, R60(2004).

    [94] S K TURITSYN, A E BEDNYAKOVA, M P FEDORUK et al. Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics. Optics Express, 19, 8394-8405(2011).

    [95] J FURST, D STREKALOV, D ELSER et al. Naturally phase matched second harmonic generation in a whispering gallery mode resonator(2010).

    [96] Z F BI, A W RODRIGUEZ, H HASHEMI et al. High-efficiency second-harmonic generation in doubly-resonant χ microring resonators. Optics Express, 20, 7526(2012).

    [97] KHURGIN , B JACOB. How to deal with the loss in plasmonics and metamaterials. Nature Nanotechnology, 10, 2-6(2015).

    [98] Z LIN, X LIANG, M LONCAR et al. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica, 3, 233-238(2016).

    [99] Z LIN, M LONCAR, A W RODRIGUEZ. Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion. Optics Letters, 42, 2818-2821(2017).

    [100] C SITAWARIN, W JIN, Z LIN et al. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion. Photonics Research, 6, B82-B86(2018).

    [101] T W HUGHES, M MINKOV, I A D WILLIAMSON et al. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photonics, 5, 4781-4787(2018).

    [102] Y BLECHMAN, E ALMEIDA, B SAIN et al. Optimizing the nonlinear optical response of plasmonic metasurfaces. Nano Letters, 19, 261-268(2019).

    [103] W FAN, T CHEN, E GIL et al. Second harmonic imaging enhanced by deep learning decipher. ACS Photonics, 8, 1562-1568(2021).

    [104] M RAISSI, P PERDIKARIS, G E KARNIADAKIS. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686-707(2019).

    Dina MA, Hua CHENG, Jianguo TIAN, Shuqi CHEN. Inverse Design Methods and Applications of Photonics Devices(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151110
    Download Citation