• Infrared Technology
  • Vol. 45, Issue 5, 474 (2023)
Lu ZHENG1,2, Yueping PENG2,*, and Tongtong ZHOU1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    ZHENG Lu, PENG Yueping, ZHOU Tongtong. A Lightweight Infrared Target Detection Algorithm for Multi-scale Targets[J]. Infrared Technology, 2023, 45(5): 474 Copy Citation Text show less
    References

    [1] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.

    [2] Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.

    [3] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. Advances in neural Information Processing Systems, 2015, 28: 91-99.

    [4] LIU W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European conference on computer vision., 2016: 21-37.

    [5] Bochkovskiy A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J/OL]. arXiv preprint arXiv, 2020, https://arxiv.org/abs/2004.10934

    [6] WANG C Y, Yeh I H, LIAO H Y M. You Only Learn One Representation: Unified Network for Multiple Tasks[J/OL]. arXiv pre-print arXiv, 2021, https://arxiv.org/abs/2105.04206.

    [7] GE Z, LIU S, WANG F, et al. Yolox: Exceeding yolo series in 2021[J/OL]. arXiv preprint arXiv, 2021, https://arxiv.org/abs/2107.08430.

    [8] LIU M, DU H, ZHAO Y, et al. Image small target detection based on deep learning with SNR controlled sample generation[M]//Current Trends in Computer Science and Mechanical Automation, 2018: 211-220.

    [9] LIN Liangkui, WANG Shaoyou, TANG Zhongxing. Using deep learning to detect small targets in infrared oversampling images[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 947-952.

    [10] ZHAO D, ZHOU H, RANG S, et al. An adaptation of CNN for small target detection in the infrared[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018: 669-672.

    [12] FAN M, TIAN S, LIU K, et al. Infrared small target detection based on region proposal and CNN classifier[J]. Signal, Image and Video Processing, 2021, 15: 1927-1936.

    [14] Redmon J, Farhadi A. Yolov3: An incremental improvement[J/OL]. arXiv preprint arXiv, 2018, https://arxiv.org/abs/1804.02767.

    [15] Howard A, Zhmoginov A, CHEN L C, et al. Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and segmentation[J/OL]. Computer Science, 2018, https://arxiv.org/abs/ 1801.04381v2.

    [16] Howard A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J/OL]. arXiv preprint arXiv, 2017, https://arxiv.org/abs/1704.04861.

    [17] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.

    ZHENG Lu, PENG Yueping, ZHOU Tongtong. A Lightweight Infrared Target Detection Algorithm for Multi-scale Targets[J]. Infrared Technology, 2023, 45(5): 474
    Download Citation