• Frontiers of Optoelectronics
  • Vol. 13, Issue 3, 235 (2020)
Peipei DU1, Liang GAO2, and Jiang TANG2、*
Author Affiliations
  • 1State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-020-1042-y Cite this Article
    Peipei DU, Liang GAO, Jiang TANG. Focus on performance of perovskite light-emitting diodes[J]. Frontiers of Optoelectronics, 2020, 13(3): 235 Copy Citation Text show less
    References

    [1] Lee T W. Emerging halide perovskite materials and devices for optoelectronics. Advanced Materials, 2019, 31(47): e1905077

    [2] Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249–253

    [3] Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245–248

    [4] Tan Z K, Moghaddam R S, LaiML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9 (9): 687–692

    [5] Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics, 2018, 12(11): 681–687

    [6] Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y, Huang J. Efficient sky-blue perovskite lightemitting diodes via photoluminescence enhancement. Nature Communications, 2019, 10(1): 5633

    [7] Liu Y, Cui J, Du K, Tian H, He Z, Zhou Q, Yang Z, Deng Y, Chen D, Zuo X, Ren Y, Wang L, Zhu H, Zhao B, Di D, Wang J, Friend R H, Jin Y. Efficient blue light-emitting diodes based on quantumconfined bromide perovskite nanostructures. Nature Photonics, 2019, 13(11): 760–764

    [8] Meredith P, Armin A. LED technology breaks performance barrier. Nature, 2018, 562(7726): 197–198

    [9] naya M, Rand B P, Holmes R J, Credgington D, Bolink H J, Friend R H, Wang J, Greenham N C, Stranks S D. Best practices for measuring emerging light-emitting diode technologies. Nature Photonics, 2019, 13(12): 818–821

    [10] Li J, Du P, Li S, Liu J, Zhu M, Tan Z, Hu M, Luo J, Guo D, Ma L, Nie Z, Ma Y, Gao L, Niu G, Tang J. High-throughput combinatorial optimizations of perovskite light-emitting diodes based on allvacuum deposition. Advanced Functional Materials, 2019, 29(51): 1903607

    [11] Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5. Nature Communications, 2019, 10(1): 1027

    [12] Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E. High efficiency blue and green light-emitting diodes using ruddlesden–popper inorganic mixed halide perovskites with butylammonium interlayers. Chemistry of Materials, 2019, 31(1): 83–89

    [13] Ma D, Todorovi? P, Meshkat S, Saidaminov M I, Wang Y K, Chen B, Li P, Scheffel B, Quintero-Bermudez R, Fan J Z, Dong Y, Sun B, Xu C, Zhou C, Hou Y, Li X, Kang Y, Voznyy O, Lu Z H, Ban D, Sargent E H. Chloride insertion–immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. Journal of the American Chemical Society, 2020, 142(11): 5126–5134

    [14] Yuan F, Ran C, Zhang L, Dong H, Jiao B, Hou X, Li J, Wu Z. A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes. ACS Energy Letters, 2020, 5(4): 1062–1069

    [15] Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J. Spectra stable blue perovskite light-emitting diodes. Nature Communications, 2019, 10(1): 1868

    [16] Yao J, Wang L, Wang K, Yin Y, Yang J, Zhang Q, Yao H. Calciumtributylphosphine oxide passivation enables the efficiency of pureblue perovskite light-emitting diode up to 3.3%. Science Bulletin, 2020, doi:10.1016/j.scib.2020.03.036

    [17] Yuan S, Wang Z K, Xiao L X, Zhang C F, Yang S Y, Chen B B, Ge H T, Tian Q S, Jin Y, Liao L S. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue lightemitting diodes. Advanced Materials, 2019, 31(44): e1904319

    [18] Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Advanced Materials, 2019, 31(24): e1901517

    [19] Shen Y, LiMN, Li Y, Xie FM,Wu H Y, Zhang G H, Chen L, Lee S T, Tang J X. Rational interface engineering for efficient flexible perovskite light-emitting diodes. ACS Nano, 2020, acsnano. 0c01908

    [20] Park M H, Park J, Lee J, So H S, Kim H, Jeong S H, Han T H, Wolf C, Lee H, Yoo S, Lee TW. Efficient perovskite light-emitting diodes using polycrystalline core–shell-mimicked nanograins. Advanced Functional Materials, 2019, 29(22): 1902017

    [21] Wang H, Zhang X, Wu Q, Cao F, Yang D, Shang Y, Ning Z, Zhang W, Zheng W, Yan Y, Kershaw S V, Zhang L, Rogach A L, Yang X. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nature Communications, 2019, 10(1): 665

    [22] Wu C, Zou Y, Wu T, Ban M, Pecunia V, Han Y, Liu Q, Song T, Duhm S, Sun B. Improved performance and stability of allinorganic perovskite light-emitting diodes by antisolvent vapor treatment. Advanced Functional Materials, 2017, 27(28): 1700338

    [23] Zou C, Liu Y, Ginger D S, Lin L Y. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite lightemitting diodes. ACS Nano, 2020, acsnano.0c01817

    [24] Sim K, Jun T, Bang J, Kamioka H, Kim J, Hiramatsu H, Hosono H. Performance boosting strategy for perovskite light-emitting diodes. Applied Physics Reviews, 2019, 6(3): 031402

    [25] Fang Z, Chen W, Shi Y, Zhao J, Chu S, Zhang J, Xiao Z. Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20%. Advanced Functional Materials, 2020, 30(12): 1909754

    [26] Cai W, Chen Z, Li Z, Yan L, Zhang D, Liu L, Xu Q H,Ma Y, Huang F, Yip H L, Cao Y. Polymer-assisted in situ growth of all-inorganic perovskite nanocrystal film for efficient and stable pure-red lightemitting devices. ACS Applied Materials & Interfaces, 2018, 10 (49): 42564–42572

    [27] Lu M, Guo J, Sun S, Lu P, Wu J, Wang Y, Kershaw S V, Yu W W, Rogach A L, Zhang Y. Bright CsPbI3 perovskite quantum dot lightemitting diodes with top-emitting structure and a low efficiency rolloff realized by applying zirconium acetylacetonate surface modification. Nano Letters, 2020, 20(4): 2829–2836

    [28] Cheng G, Liu Y, Chen T, Chen W, Fang Z, Zhang J, Ding L, Li X, Shi T, Xiao Z. Efficient all-inorganic perovskite light-emitting diodes with improved operation stability. ACS Applied Materials & Interfaces, 2020, 12(15): 18084–18090

    [29] Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13(6): 418–424

    [30] Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L, Alsari M, She X J, Liang L, Zhang J, Lilliu S, Gao P, Snaith H J,Wang J, Greenham N C, Friend R H, Di D. Highefficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics, 2018, 12(12): 783–789

    [31] Zhao X, Tan Z K. Large-area near-infrared perovskite light-emitting diodes. Nature Photonics, 2020, 14(4): 215–218

    [32] Han T H, Lee JW, Choi Y J, Choi C, Tan S, Lee S J, Zhao Y, Huang Y, Kim D, Yang Y. Surface-2D/bulk-3D heterophased perovskite nanograins for long-term-stable light-emitting diodes. Advanced Materials, 2020, 32(1): e1905674

    [33] Du P, Li J,Wang L, Liu J, Li S, Liu N, Li Y, Zhang M, Gao L, Ma Y, Tang J. Vacuum-deposited blue inorganic perovskite light-emitting diodes. ACS Applied Materials & Interfaces, 2019, 11(50): 47083– 47090

    [34] Leyden M R, Meng L, Jiang Y, Ono L K, Qiu L, Juarez-Perez E J, Qin C, Adachi C, Qi Y. Methylammonium lead bromide perovskite light-emitting diodes by chemical vapor deposition. Journal of Physical Chemistry Letters, 2017, 8(14): 3193–3198

    [35] Hu Y, Wang Q, Shi Y L, Li M, Zhang L, Wang Z K, Liao L S. Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5 (32): 8144–8149

    [36] Chiang K M, Hsu B W, Chang Y A, Yang L, Tsai W L, Lin H W. Vacuum-deposited organometallic halide perovskite light-emitting devices. ACS Applied Materials & Interfaces, 2017, 9(46): 40516– 40522

    [37] Zhuang S, Ma X, Hu D, Dong X, Zhang B. Air-stable all inorganic green perovskite light emitting diodes based on ZnO/CsPbBr3/NiO heterojunction structure. Ceramics International, 2018, 44(5): 4685– 4688

    [38] Shi Z, Lei L, Li Y, Zhang F, Ma Z, Li X, Wu D, Xu T, Tian Y, Zhang B, Yao Z, Du G. Hole-injection layer-free perovskite lightemitting diodes. ACS Applied Materials & Interfaces, 2018, 10(38): 32289–32297

    [39] Lian X,Wang X, Ling Y, Lochner E, Tan L, Zhou Y, Ma B, Hanson K, Gao H. Light emitting diodes based on inorganic composite halide perovskites. Advanced Functional Materials, 2019, 29(5): 1807345

    [40] Tan Y, Li R, Xu H, Qin Y, Song T, Sun B. Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Advanced Functional Materials, 2019, 29(23): 1900730

    [41] Shin M, Lee H S, Sim Y C, Cho Y H, Cheol Choi K, Shin B. Modulation of growth kinetics of vacuum-deposited CsPbBr3 films for efficient light-emitting diodes. ACS Applied Materials & Interfaces, 2020, 12(1): 1944–1952

    [42] Jia K, Song L, Hu Y, Guo X, Liu X, Geng C, Xu S, Fan R, Huang L, Luan N, Bi W. Improved performance for thermally evaporated perovskite light-emitting devices via defect passivation and carrier regulation. ACS Applied Materials & Interfaces, 2020, 12(13): 15928–15933

    [43] Yuan F, Xi J, Dong H, Xi K, Zhang W, Ran C, Jiao B, Hou X, Jen A K Y, Wu Z. All-inorganic hetero-structured cesium tin halide perovskite light-emitting diodes with current density over 900 A$cm–2 and its amplified spontaneous emission behaviors. Physica Status Solidi (RRL)–Rapid Research Letters, 2018, 12(5): 1800090

    [44] Gil-Escrig L, Miquel-Sempere A, Sessolo M, Bolink H J. Mixed iodide–bromide methylammonium lead perovskite-based diodes for light emission and photovoltaics. Journal of Physical Chemistry Letters, 2015, 6(18): 3743–3748

    [45] D?nekamp B, Droseros N, Palazon F, Sessolo M, Banerji N, Bolink H J. Efficient photo- and electroluminescence by trap states passivation in vacuum-deposited hybrid perovskite thin films. ACS Applied Materials & Interfaces, 2018, 10(42): 36187–36193

    [46] Leng M, Yang Y, Chen Z, Gao W, Zhang J, Niu G, Li D, Song H, Zhang J, Jin S, Tang J. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Letters, 2018, 18(9): 6076–6083

    [47] Leng M, Yang Y, Zeng K, Chen Z, Tan Z, Li S, Li J, Xu B, Li D, Hautzinger M P, Fu Y, Zhai T, Xu L, Niu G, Jin S, Tang J. Allinorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28(1): 1704446

    [48] Tan Z, Li J, Zhang C, Li Z, Hu Q, Xiao Z, Kamiya T, Hosono H, Niu G, Lifshitz E, Cheng Y, Tang J. Highly efficient blue-emitting Bidoped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Advanced Functional Materials, 2018, 28(29): 1801131

    [49] Hu Q, Deng Z, Hu M, Zhao A, Zhang Y, Tan Z, Niu G,Wu H, Tang J. X-ray scintillation in lead-free double perovskite crystals. Science China, Chemistry, 2018, 61(12): 1581–1586

    [50] Zhou C, Tian Y, Yuan Z, Lin H, Chen B, Clark R, Dilbeck T, Zhou Y, Hurley J, Neu J, Besara T, Siegrist T, Djurovich P, Ma B. Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite. ACS Applied Materials & Interfaces, 2017, 9(51): 44579–44583

    [51] LaiML, Tay T Y S, Sadhanala A, Dutton S E, Li G, Friend R H, Tan Z K. Tunable near-infrared luminescence in tin-halide perovskite devices. Journal of Physical Chemistry Letters, 2016, 7(14): 2653– 2658

    [52] HongWL, Huang Y C, Chang C Y, Zhang Z C, Tsai H R, Chang N Y, Chao Y C. Efficient low-temperature solution-processed leadfree perovskite infrared light-emitting diodes. Advanced Materials, 2016, 28(36): 8029–8036

    [53] Lanzetta L, Marin-Beloqui JM, Sanchez-Molina I, Ding D, Haque S A. Two-dimensional organic tin halide perovskites with tunable visible emission and their use in light-emitting devices. ACS Energy Letters, 2017, 2(7): 1662–1668

    [54] Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Advanced Materials, 2018, 30(43): e1804547

    [55] Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J,Wang J, Yan Y, Sargent E H, Tang J. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541–545

    [56] Zhang X, Wang C, Zhang Y, Zhang X, Wang S, Lu M, Cui H, Kershaw S V, Yu W W, Rogach A L. Bright orange electroluminescence from lead-free two-dimensional perovskites. ACS Energy Letters, 2019, 4(1): 242–248

    [57] Singh A, Chiu N C, Boopathi K M, Lu Y J, Mohapatra A, Li G, Chen Y F, Guo T F, Chu C W. Lead-free antimony-based lightemitting diodes through the vapor–anion-exchange method. ACS Applied Materials & Interfaces, 2019, 11(38): 35088–35094

    [58] Ma Z, Shi Z, Yang D, Zhang F, Li S, Wang L, Wu D, Zhang Y, Na G, Zhang L, Li X, Zhang Y, Shan C. Electrically-driven violet lightemitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Letters, 2020, 5(2): 385–394

    [59] Liang H, Yuan F, Johnston A, Gao C, Choubisa H, Gao Y, Wang Y K, Sagar L K, Sun B, Li P, Bappi G, Chen B, Li J,Wang Y, Dong Y, Ma D, Gao Y, Liu Y, Yuan M, Saidaminov M I, Hoogland S, Lu Z H, Sargent E H. High color purity lead-free perovskite light-emitting diodes via Sn stabilization. Advancement of Science, 2020, 7(8): 1903213

    [60] Ma Z, Shi Z, Qin C, Cui M, Yang D, Wang X, Wang L, Ji X, Chen X, Sun J, Wu D, Zhang Y, Li X J, Zhang L, Shan C. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano, 2020, 14 (4): 4475–4486

    [61] Wang L, Shi Z, Ma Z, Yang D, Zhang F, Ji X,Wang M, Chen X, Na G, Chen S, Wu D, Zhang Y, Li X, Zhang L, Shan C. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Letters, 2020, 20(5): 3568–3576

    [62] Quan L N, Rand B P, Friend R H, Mhaisalkar S G, Lee TW, Sargent E H. Perovskites for next-generation optical sources. Chemical Reviews, 2019, 119(12): 7444–7477

    [63] Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A, Jang J, Nazeeruddin M K. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Advanced Optical Materials, 2017, 5(7): 1600920

    [64] Wu C, Wu T, Yang Y, McLeod J A, Wang Y, Zou Y, Zhai T, Li J, Ban M, Song T, Gao X, Duhm S, Sirringhaus H, Sun B. Alternative type two-dimensional–three-dimensional lead halide perovskite with inorganic sodium ions as a spacer for high-performance light-emitting diodes. ACS Nano, 2019, 13(2): 1645–1654

    [65] Chen H, Fan L, Zhang R, Bao C, Zhao H, Xiang W, Liu W, Niu G, Guo R, Zhang L, Wang L. High-efficiency formamidinium lead bromide perovskite nanocrystal-based light-emitting diodes fabricated via a surface defect self-passivation strategy. Advanced Optical Materials, 2020, 8(6): 1901390

    [66] He Z, Liu Y, Yang Z, Li J, Cui J, Chen D, Fang Z, He H, Ye Z, Zhu H,Wang N,Wang J, Jin Y. High-efficiency red light-emitting diodes based on multiple quantum wells of phenylbutylammonium-cesium lead iodide perovskites. ACS Photonics, 2019, 6(3): 587–594

    [67] Xiao Z, Kerner R A, Tran N, Zhao L, Scholes G D, Rand B P. Engineering perovskite nanocrystal surface termination for lightemitting diodes with external quantum efficiency exceeding 15%. Advanced Functional Materials, 2019, 29(11): 1807284

    [68] Deng W, Xu X, Zhang X, Zhang Y, Jin X, Wang L, Lee S T, Jie J. Organometal halide perovskite quantum dot light-emitting diodes. Advanced Functional Materials, 2016, 26(26): 4797–4802

    [69] Na Quan L, Ma D, Zhao Y, Voznyy O, Yuan H, Bladt E, Pan J, García de Arquer F P, Sabatini R, Piontkowski Z, Emwas A H, Todorovi? P, Quintero-Bermudez R,Walters G, Fan J Z, Liu M, Tan H, Saidaminov M I, Gao L, Li Y, Anjum D H, Wei N, Tang J, McCamant DW, Roeffaers MB J, Bals S, Hofkens J, Bakr OM, Lu Z H, Sargent E H. Edge stabilization in reduced-dimensional perovskites. Nature Communications, 2020, 11(1): 170

    [70] Song J, Fang T, Li J, Xu L, Zhang F, Han B, Shan Q, Zeng H. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Advanced Materials, 2018, 30(50): e1805409

    [71] Tian Y, Zhou C, Worku M, Wang X, Ling Y, Gao H, Zhou Y, Miao Y, Guan J, Ma B. Highly efficient spectrally stable red perovskite light-emitting diodes. Advanced Materials, 2018, 30(20): e1707093 .

    Peipei DU, Liang GAO, Jiang TANG. Focus on performance of perovskite light-emitting diodes[J]. Frontiers of Optoelectronics, 2020, 13(3): 235
    Download Citation