• Chinese Journal of Lasers
  • Vol. 49, Issue 14, 1402305 (2022)
Mingzheng Huo1, Jie Chen1, Qin Yang1, Zheng Xiang1, Donghua Dai2, Shangqin Yuan3, Shuke Huang1, and Xianfeng Shen1、*
Author Affiliations
  • 1Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621000, Sichuan, China
  • 2College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
  • 3Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China
  • show less
    DOI: 10.3788/CJL202249.1402305 Cite this Article Set citation alerts
    Mingzheng Huo, Jie Chen, Qin Yang, Zheng Xiang, Donghua Dai, Shangqin Yuan, Shuke Huang, Xianfeng Shen. Influence of Rod Diameter on Dynamic Vibration Damping Characteristics of NiTi Alloy Lattice Structure Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2022, 49(14): 1402305 Copy Citation Text show less
    References

    [1] Elahinia M, Moghaddam N S, Andani M T et al. Fabrication of NiTi through additive manufacturing: a review[J]. Progress in Materials Science, 83, 630-663(2016).

    [2] Elahinia M H, Hashemi M, Tabesh M et al. Manufacturing and processing of NiTi implants: a review[J]. Progress in Materials Science, 57, 911-946(2012).

    [3] Biffi C A, Bassani P, Fiocchi J et al. Microstructural and mechanical response of NiTi lattice 3D structure produced by selective laser melting[J]. Metals, 10, 814(2020).

    [4] Xia M L, Sun Q P. Thermomechanical responses of nonlinear torsional vibration with NiTi shape memory alloy-alternative stable states and their jumps[J]. Journal of the Mechanics and Physics of Solids, 102, 257-276(2017).

    [5] Hu Z H, Song C H, Liu L Q et al. Research progress of selective laser melting of nitinol[J]. Chinese Journal of Lasers, 47, 1202005(2020).

    [6] Wang X B, Speirs M, Kustov S et al. Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect[J]. Scripta Materialia, 146, 246-250(2018).

    [7] Jin M J, Song Y W, Wang X D et al. Ultrahigh damping capacity achieved by modulating R phase in Ti49.2Ni50.8 shape memory alloy wires[J]. Scripta Materialia, 183, 102-106(2020).

    [8] Wu S K, Lin H C. Damping characteristics of TiNi binary and ternary shape memory alloys[J]. Journal of Alloys and Compounds, 355, 72-78(2003).

    [9] Lu H Z, Yang C, Luo X et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing[J]. Materials Science and Engineering A, 763, 138166(2019).

    [10] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [11] Yang Y Q, Wang D, Wu W H. Research progress of direct manufacturing of metal parts by selective laser melting[J]. Chinese Journal of Lasers, 38, 0601007(2011).

    [12] Hamilton R F, Palmer T A, Bimber B A. Spatial characterization of the thermal-induced phase transformation throughout as-deposited additive manufactured NiTi bulk builds[J]. Scripta Materialia, 101, 56-59(2015).

    [13] Halani P R, Shin Y C. In situ synthesis and characterization of shape memory alloy nitinol by laser direct deposition[J]. Metallurgical and Materials Transactions A, 43, 650-657(2012).

    [14] Qin L Y, Men J H, Zhao S et al. Effect of TiB2 content on microstructure and mechanical properties of TiB/Ti-6Al-4V composites formed by selective laser melting[J]. Chinese Journal of Lasers, 48, 0602102(2021).

    [15] Ha C S, Lakes R S, Plesha M E. Cubic negative stiffness lattice structure for energy absorption: numerical and experimental studies[J]. International Journal of Solids and Structures, 178/179, 127-135(2019).

    [16] Salari-Sharif L, Schaedler T A, Valdevit L. Energy dissipation mechanisms in hollow metallic microlattices[J]. Journal of Materials Research, 29, 1755-1770(2014).

    [17] Schaedler T A, Jacobsen A J, Torrents A et al. Ultralight metallic microlattices[J]. Science, 334, 962-965(2011).

    [18] Frenzel T, Findeisen C, Kadic M et al. Tailored buckling microlattices as reusable light-weight shock absorbers[J]. Advanced Materials, 28, 5865-5870(2016).

    [19] Li P Y, Ma Y E, Sun W B et al. Fracture and failure behavior of additive manufactured Ti6Al4V lattice structures under compressive load[J]. Engineering Fracture Mechanics, 244, 107537(2021).

    [20] Rosa F, Manzoni S, Casati R. Damping behavior of 316L lattice structures produced by selective laser melting[J]. Materials & Design, 160, 1010-1018(2018).

    [21] Scalzo F, Totis G, Vaglio E et al. Experimental study on the high-damping properties of metallic lattice structures obtained from SLM[J]. Precision Engineering, 71, 63-77(2021).

    [22] Zhao M, Liu F, Fu G et al. Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM[J]. Materials, 11, 2411(2018).

    [23] Ashby M F. The properties of foams and lattices[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364, 15-30(2006).

    [24] Syam W P, Wu J W, Bo Z et al. Design and analysis of strut-based lattice structures for vibration isolation[J]. Precision Engineering, 52, 494-506(2018).

    [25] Dong Z C, Liu Y B, Zhang Q et al. Microstructural heterogeneity of AlSi10Mg alloy lattice structures fabricated by selective laser melting: phenomena and mechanism[J]. Journal of Alloys and Compounds, 833, 155071(2020).

    [26] Delroisse P, Jacques P J, Maire E et al. Effect of strut orientation on the microstructure heterogeneities in AlSi10Mg lattices processed by selective laser melting[J]. Scripta Materialia, 141, 32-35(2017).

    [27] Yang Q, Sun K H, Yang C et al. Compression and superelasticity behaviors of NiTi porous structures with tiny strut fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 858, 157674(2021).

    [28] Dadbakhsh S, Speirs M, Kruth J P et al. Influence of SLM on shape memory and compression behaviour of NiTi scaffolds[J]. CIRP Annals, 64, 209-212(2015).

    [29] Frenzel J, George E P, Dlouhy A et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys[J]. Acta Materialia, 58, 3444-3458(2010).

    [30] Zhao M, Shao Y M, Zheng W J et al. Tailoring the damping and mechanical properties of porous NiTi by a phase leaching process[J]. Journal of Alloys and Compounds, 855, 157471(2021).

    [31] Zhang J, Gungor M N, Lavernia E J. The effect of porosity on the microstructural damping response of 6061 aluminium alloy[J]. Journal of Materials Science, 28, 1515-1524(1993).

    [32] Fraczkiewicz M, Zhou A G, Barsoum M W. Mechanical damping in porous Ti3SiC2[J]. Acta Materialia, 54, 5261-5270(2006).

    [33] Gu J, Wu G H, Zhang Q. Effect of porosity on the damping properties of modified epoxy composites filled with fly ash[J]. Scripta Materialia, 57, 529-532(2007).

    [34] Peng W L, Liu K, Shah B A et al. Enhanced internal friction and specific strength of porous TiNi shape memory alloy composite by the synergistic effect of pore and Ti2Ni[J]. Journal of Alloys and Compounds, 816, 152578(2020).

    Mingzheng Huo, Jie Chen, Qin Yang, Zheng Xiang, Donghua Dai, Shangqin Yuan, Shuke Huang, Xianfeng Shen. Influence of Rod Diameter on Dynamic Vibration Damping Characteristics of NiTi Alloy Lattice Structure Fabricated by Selective Laser Melting[J]. Chinese Journal of Lasers, 2022, 49(14): 1402305
    Download Citation