[1] BROWN G M, HOPF F R, FERGUSON J A, et al.. Metalloporphyrin redox chemistry. Effect of extraplanar ligands on the site of oxidation in ruthenium porphyrins[J]. J. Am. Chem. Soc., 1973,95(18):5939-5942.
[2] (c) ANTIPAS A, BUCHLER J W, GOUTERMAN M, et al.. Porphyrins. 36. Synthesis and optical and electronic properties of some ruthenium and osmium octaethylporphyrins[J]. J. Am. Chem. Soc., 1978,100(10):3015-3027.
(a) RILLEMA D P, NAGLE J K, BARRINGER L F, et al.. Redox properties of metalloporphyrin excited states, lifetimes, and related properties of a series of para-substituted tetraphenylporphine carbonyl complexes of ruthenium(II)[J]. J. Am. Chem. Soc., 1981,103(1):56-62.
(b) LEVINE L M A, HOLTEN D. Axial-ligand control of the photophysical behavior of ruthenium(II) tetraphenyl- and octaethylporphyrin: contrasting properties of metalloporphyrin (.pi.,.pi.*) and (d,.pi.*) excited states[J]. J. Phys Chem., 1988,92(3):714-720.
[3] (b) PRODI A, CHIORBOLI C, SCANDOLA F, et al.. Wavelength-Dependent Electron and Energy Transfer Pathways in a Side-to-Face Ruthenium Porphyrin/Perylene Bisimide Assembly[J]. J. Am. Chem. Soc., 2005,127(5):1454-1462.
(a) PRODI A, INDELLI M T, KLEVERLAAN C J, et al.. Side-to-face ruthenium porphyrin arrays: Photophysical behavior of dimeric and pentameric systems[J]. Chem. Eur. J., 1999,5(9):2668-2679.
[4] (b) WANG Y, YANG C, WANG H,et al.. A new mechanism for ethanol oxidation mediated by cytochrome P450 2E1: Bluk polarity of the active site makes a difference[J]. Chem. Bio. Chem., 2007, 8(3):277-281.
(c) MALTEMPO M M. Magnetic state of an unusual bacterial heme protein[J]. J. Chem. Phys., 1974, 61:2540-2547.
(a) DANOVICH D, SHAIK S. Spin-Orbit Coupling in the Oxidative Activation of H-H by FeO+. Selection Rules and Reactivity Effects[J]. J. Am. Chem. Soc., 1997, 119:1773-1786.
(d) OHGO Y, IKEUEk T, TAKAHASHI M,et al.. Anomalous difference in magnetic behavior between highly saddled Iron(III) Porphyrin Complexes in the solid state[J]. Eur. J. Inorg. Chem., 2004,2004(4):798-809.
[5] IWAKURA I, YABUSHITA A, KOBAYASHI T. Ultrafast vibronic processes in a Ru–Porphyrin complex[J]. Eur. J. Inorg. Chem., 2008,2008(31):4856-4860.
[6] (b) BALTUSKA A, FUJI T, KOBAYASHI T. Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control[J]. Opt. Lett., 2002,27(5):306-308.
(a) KOBAYASHI T, SHIRAKAWA A. Tunable visible and near-infrared pulse generator in a 5 fs regime[J]. Appl. Phys. B, 2000,70(7):S239-S-246.
[7] (a) KADISH K M, CHANG D. Solvent-binding and solvation effects on the electrode reactions of tetraphenylporphyrin carbonyl complexes of ruthenium(II)[J]. Inorg. Chem., 1982,21(10):3614-3618.
(b) KADISH K M, LEGGETT D J, CHANG D. Investigation of the electrochemical reactivity and axial ligand binding reactions of tetraphenylporphyrin carbonyl complexes of ruthenium(II)[J]. Inorg. Chem. 1982,21(10):3618-3622.
[8] SAMOC A. Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared[J]. J. Appl. Phys. 2003,94(9):6167-6174.
[9] SORGUES S, POISSON L, RAFFAEL K, KRIM L, et al.. Femtosecond electronic relaxation of excited metalloporphyrins in the gas phase[J]. J. Chem. Phys. 2006,124:114302.
[10] The stimulated emission spectrum was calculated from the spontaneous emission spectrum of the sample excited at λexc=515 nm (Qx(1,0) band) and at λexc=550 nm (Qx(0,0) band), which were recorded on a HITACHI model F-4500 fluorescence spectrophotometer, using the relation between the Einstein coefficients Anm (spontaneous emission) and Bnm(stimulated emission) given by Anm=(2hc/λ3)Bnm.
[11] (a) LIM M H, LIPPARD S J. Inorg. Chem. 2004, 43, 6366-6370. That (λmax=556 nm) of RuⅡ(OEP)(CO)(py) (b) Hopf. F. R., O’Brien. T. P., Scheidt. W. R., Whitten. D. G. Structure and reactivity of ruthenium(II) porphyrin complexes. Photochemical ligand ejection and formation of ruthenium porphyrin dimmers[J]. J. Am. Chem. Soc., 1975,97(2):277-281.
The fluorescence spectra (λmax=560 nm) of RuⅡ(TPP)(CO)(dansyl-imidazole)
[12] (b)BHASIKUTTAN A C, SUZUKI M, NAKASHIMA S,et al.. Ultrafast fluorescence detection in tris(2,2‘-bipyridine)ruthenium(II) complex in solution: relaxation dynamics involving higher excited states[J]. J. Am. Chem. Soc., 2002, 124(28):8398-8405.
(a) FUNATSU K, KIMURA A, IMAMURA T,et al.. Perpendicularly arranged ruthenium porphyrin dimers and trimers[J]. Inorg. Chem., 1997,36(8):1625-1635.
[13] Geometry optimizations were performed with B3LYP/6-31G* for model RuII(CO)(por).
(a) Frisch, M. J. Gaussian 03, revision, D.02; Gaussian, Inc.: Wallingford, CT, 2004. Details are shown in the Supporting Information.
(b) Becke. A. D. Density‐functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys., 1993,98:5648-5652.
(c) LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. ReV. B, 1988, 37(2): 785-789.
[14] The metal-complex structure change during the chemical reaction causes the intersystem crossing.
See also, Ref. 4(a) and (b).
(b) IWAKURA I, IKENO T, YAMADA T. A DFT study on Hetero-Diels-Alder reactions catalyzed by cobalt complexes:lewis acidity enhancement as a consequence of spin transition caused by lewis base coordination[J]. Angew. Chem. Int. Ed., 2005,44(17):2524-2527.
(a) KHAVRUTSKII I V, MUSAEV D G, MOROKUMA K. Structure, Stability, and Electronic and NMR Properties of Various Oxo- and Nitrido-Derivatives of [L(Salen)Mn(III)]+, Where L = None and Imidazole. A Density Functional Study[J]. Inorg. Chem., 2003,42(8):2606-2621.
[15] (d) BRESSLER C, MILNE C, PHAM V T,et al.. Femtosecond XANES Study of the Light-Induced Spin Crossover Dynamics in an Iron(II) Complex[J]. Science, 2009,323:489-492.
(e) KOBAYASHI T,STRAUB K D, RENTZEPIS P M. Energy relaxation mechanism in Ni(II), Pd(II), Pt(II) and Zn(II) porphyrins[J]. Photochem. Phhotobiol., 1979,29(5):925-931.
(b) GAWELDA W, CANNIZZO A, PHAM V T,et al.. Ultrafast nonadiabatic dynamics of [FeⅡ(bpy)3]2+ in solution[J]. J. Am. Chem. Soc., 2007,129(26):8199-8206.
(c) CANNIZZO A, BLANCO-RODRIGUEZ A M, NAHHAS A E,et al.. Femtosecond Fluorescence and Intersystem Crossing in Rhenium(I) Carbonyl Bipyridine Complexes[J]. J. Am. Chem. Soc., 2008,130(28):8967-8974.
The heavy-atom effect is reported not to be a critical parameter in intersystem crossing of 1MLCT→3MLCT of M(bpy)3 complex in ref. (a-d). On the other hand, the heavy-atom effect was observed in intersystem crossing of 1(π,π*)→3(π,π*) of M protoporphyrin in ref. (e). The existence of the heavy atomic effect is not sure in the present work of 1(π,π*)→3(d,π*). Therefore, just a possibility of the heavy atomic effect was mentioned in the manuscript.
(a) CANNIZZO A, MOURIK F, GAWELDA W, et al.. Broadband Femtosecond Fluorescence Spectroscopy of [Ru(bpy)3]2+ [J]. Angew. Chem. Int. Ed., 2006,45(19):3174-3176.