• Photonics Insights
  • Vol. 3, Issue 1, R01 (2024)
Jiajun Wang1、†, Peishen Li2, Xingqi Zhao1, Zhiyuan Qian2, Xinhao Wang1, Feifan Wang2, Xinyi Zhou2, Dezhuan Han3、*, Chao Peng2、*, Lei Shi1、4、5、6、*, and Jian Zi1、4、5、6、*
Author Affiliations
  • 1State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai, China
  • 2State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing, China
  • 3College of Physics, Chongqing University, Chongqing, China
  • 4Institute for Nanoelectronic devices and Quantum computing, Fudan University, Shanghai, China
  • 5Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
  • 6Shanghai Research Center for Quantum Sciences, Shanghai, China
  • show less
    DOI: 10.3788/PI.2024.R01 Cite this Article Set citation alerts
    Jiajun Wang, Peishen Li, Xingqi Zhao, Zhiyuan Qian, Xinhao Wang, Feifan Wang, Xinyi Zhou, Dezhuan Han, Chao Peng, Lei Shi, Jian Zi. Optical bound states in the continuum in periodic structures: mechanisms, effects, and applications[J]. Photonics Insights, 2024, 3(1): R01 Copy Citation Text show less
    References

    [1] J. von Neumann, E. Wigner. Über merkwürdige diskrete eigenworte. Phys. Z, 30, 465(1929).

    [2] F. H. Stillinger, D. R. Herrick. Bound states in the continuum. Phys. Rev. A, 11, 446(1975).

    [3] K. Yamanouchi, K. Shibayama. Propagation and amplification of rayleigh waves and piezoelectric leaky surface waves in linbo3. J. Appl. Phys., 43, 856(1972).

    [4] A. Lyapina et al. Bound states in the continuum in open acoustic resonators. J. Fluid Mech., 780, 370(2015).

    [5] I. Deriy et al. Bound states in the continuum in compact acoustic resonators. Phys. Rev. Lett., 128, 084301(2022).

    [6] Z. Zhou et al. Observation of perfectly-chiral exceptional point via bound state in the continuum. Phys. Rev. Lett., 130, 116101(2023).

    [7] M. McIver. An example of non-uniqueness in the two-dimensional linear water wave problem. J. Fluid Mech., 315, 257(1996).

    [8] M. McIver. Trapped modes supported by submerged obstacles. Proc. R. Soc. A: Math. Phys. Eng. Sci., 456, 1851(2000).

    [9] R. Porter. Trapping of water waves by pairs of submerged cylinders. Proc. R. Soc. A: Math. Phys. Eng. Sci., 458, 607(2002).

    [10] C. Linton, P. McIver. Embedded trapped modes in water waves and acoustics. Wave Motion, 45, 16(2007).

    [11] S. Longhi. Bound states in the continuum in a single-level fano-anderson model. Eur. Phys. J. B, 57, 45(2007).

    [12] D. Marinica, A. Borisov, S. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [13] E. N. Bulgakov, A. F. Sadreev. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B, 78, 075105(2008).

    [14] S. Weimann et al. Compact surface fano states embedded in the continuum of waveguide arrays. Phys. Rev. Lett., 111, 240403(2013).

    [15] C. W. Hsu et al. Observation of trapped light within the radiation continuum. Nature, 499, 188(2013).

    [16] C. W. Hsu et al. Bound states in the continuum. Nat. Rev. Mater., 1, 1(2016).

    [17] J. Gomis-Bresco, D. Artigas, L. Torner. Anisotropy-induced photonic bound states in the continuum. Nat. Photonics, 11, 232(2017).

    [18] K. Koshelev, A. Bogdanov, Y. Kivshar. Meta-optics and bound states in the continuum. Sci. Bull., 64, 836(2019).

    [19] Z. Hu et al. Nonlinear control of photonic higher-order topological bound states in the continuum. Light Sci. Appl., 10, 164(2021).

    [20] A. F. Sadreev. Interference traps waves in an open system: bound states in the continuum. Rep. Prog. Phys., 84, 055901(2021).

    [21] J. D. Joannopoulos et al. Molding the Flow of Light(2008).

    [22] B. Zhen et al. Topological nature of optical bound states in the continuum. Phys. Rev. Lett., 113, 257401(2014).

    [23] Y. Zhang et al. Observation of polarization vortices in momentum space. Phys. Rev. Lett., 120, 186103(2018).

    [24] H. M. Doeleman et al. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photonics, 12, 397(2018).

    [25] K. Koshelev et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [26] H. Feshbach. Unified theory of nuclear reactions. Ann. Phys., 5, 357(1958).

    [27] H. Friedrich, D. Wintgen. Interfering resonances and bound states in the continuum. Phys. Rev. A, 32, 3231(1985).

    [28] S. Fan, W. Suh, J. D. Joannopoulos. Temporal coupled-mode theory for the fano resonance in optical resonators. J. Opt. Soc. Am. A, 20, 569(2003).

    [29] W. Suh, Z. Wang, S. Fan. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron., 40, 1511(2004).

    [30] A. Volya, V. Zelevinsky. Non-hermitian effective hamiltonian and continuum shell model. Phys. Rev. C, 67, 054322(2003).

    [31] M. V. Rybin et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett., 119, 243901(2017).

    [32] S. I. Azzam et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett., 121, 253901(2018).

    [33] M. Kang et al. Merging bound states in the continuum at off-high symmetry points. Phys. Rev. Lett., 126, 117402(2021).

    [34] S. Joseph et al. Exploring the optical bound state in the continuum in a dielectric grating coupled plasmonic hybrid system. Adv. Opt. Mater., 9, 2001895(2021).

    [35] Y. Zhou et al. Dual-quasi bound states in the continuum enabled plasmonic metasurfaces. Adv. Opt. Mater., 10, 2200965(2022).

    [36] K. Sakoda. Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices. Phys. Rev. B, 52, 7982(1995).

    [37] T. Ochiai, K. Sakoda. Dispersion relation and optical transmittance of a hexagonal photonic crystal slab. Phys. Rev. B, 63, 125107(2001).

    [38] J. Lee et al. Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett., 109, 067401(2012).

    [39] J. Jin et al. Topologically enabled ultrahigh-q guided resonances robust to out-of-plane scattering. Nature, 574, 501(2019).

    [40] T. Yoda, M. Notomi. Generation and annihilation of topologically protected bound states in the continuum and circularly polarized states by symmetry breaking. Phys. Rev. Lett., 125, 053902(2020).

    [41] C. F. Doiron, I. Brener, A. Cerjan. Realizing symmetry-guaranteed pairs of bound states in the continuum in metasurfaces. Nat. Commun., 13, 7534(2022).

    [42] X. Gao et al. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs. Sci. Rep., 6, 31908(2016).

    [43] X. Gao et al. Bound states in the continuum in fiber bragg gratings. ACS Photonics, 6, 2996(2019).

    [44] P. Hu et al. Global phase diagram of bound states in the continuum. Optica, 9, 1353(2022).

    [45] Y. Yang et al. Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett., 113, 037401(2014).

    [46] Y. Yang et al. Three-dimensional coupled-wave theory for the guided mode resonance in photonic crystal slabs: Tm-like polarization. Opt. Lett., 39, 4498(2014).

    [47] S. Dai et al. From topologically protected coherent perfect reflection to bound states in the continuum. Phys. Rev. B, 98, 081405(2018).

    [48] P. Hu et al. Bound states in the continuum based on the total internal reflection of bloch waves. Natl. Sci. Rev., 10, nwac043(2023).

    [49] J. D. Jackson. Classical Electrodynamics(1999).

    [50] W. Chen, Y. Chen, W. Liu. Singularities and poincaré indices of electromagnetic multipoles. Phys. Rev. Lett., 122, 153907(2019).

    [51] Z. Sadrieva et al. Multipolar origin of bound states in the continuum. Phys. Rev. B, 100, 115303(2019).

    [52] W. Chen, Y. Chen, W. Liu. Line singularities and hopf indices of electromagnetic multipoles. Laser Photonics Rev., 14, 2000049(2020).

    [53] Z. Che et al. Polarization singularities of photonic quasicrystals in momentum space. Phys. Rev. Lett., 127, 043901(2021).

    [54] M. Gong et al. Multipolar perspective on unidirectional guided resonances. Phys. Rev. A, 108, 013522(2023).

    [55] Q. Jiang et al. General bound states in the continuum in momentum space. Phys. Rev. Lett., 131, 013801(2023).

    [56] K. Sakoda, K. Sakoda. Optical Properties of Photonic Crystals, 2(2005).

    [57] X. Wang et al. Realizing tunable evolution of bound states in the continuum and circularly polarized points by symmetry breaking. ACS Photonics, 10, 2316(2022).

    [58] E. N. Bulgakov, A. F. Sadreev. Bloch bound states in the radiation continuum in a periodic array of dielectric rods. Phys. Rev. A, 90, 053801(2014).

    [59] W. Ye, Y. Gao, J. Liu. Singular points of polarizations in the momentum space of photonic crystal slabs. Phys. Rev. Lett., 124, 153904(2020).

    [60] X. Yin et al. Observation of topologically enabled unidirectional guided resonances. Nature, 580, 467(2020).

    [61] Y. Zeng et al. Dynamics of topological polarization singularity in momentum space. Phys. Rev. Lett., 127, 176101(2021).

    [62] M. Kang et al. Merging bound states in the continuum by harnessing higher-order topological charges. Light Sci. Appl., 11, 228(2022).

    [63] X. Qi et al. Steerable merging bound states in the continuum on a quasi-flatband of photonic crystal slabs without breaking symmetry. Photonics Res., 11, 1262(2023).

    [64] S. Wan et al. Topologically enabled ultrahigh-q chiroptical resonances by merging bound states in the continuum. Opt. Lett., 47, 3291(2022).

    [65] H. Luo et al. Dynamics of diverse polarization singularities in momentum space with far-field interference. Phys. Rev. A, 107, 013504(2023).

    [66] W. Liu et al. Circularly polarized states spawning from bound states in the continuum. Phys. Rev. Lett., 123, 116104(2019).

    [67] J. Wang et al. Routing valley exciton emission of a WS2 monolayer via delocalized bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs. Light Sci. Appl., 9, 148(2020).

    [68] S. Kim et al. Topological control of 2d perovskite emission in the strong coupling regime. Nano Lett., 21, 10076(2021).

    [69] J. Tian et al. Optical rashba effect in a light-emitting perovskite metasurface. Adv. Mater., 34, 2109157(2022).

    [70] X. Zhang et al. Chiral emission from resonant metasurfaces. Science, 377, 1215(2022).

    [71] Y. Chen et al. Observation of intrinsic chiral bound states in the continuum. Nature, 613, 474(2023).

    [72] X. Yin et al. Topological unidirectional guided resonances emerged from interband coupling. Phys. Rev. Lett., 130, 056401(2023).

    [73] H. Qin et al. Arbitrarily polarized bound states in the continuum with twisted photonic crystal slabs. Light Sci. Appl., 12, 66(2023).

    [74] Q. Song et al. Coexistence of a new type of bound state in the continuum and a lasing threshold mode induced by pt symmetry. Sci. Adv., 6, eabc1160(2020).

    [75] C. Zhao et al. Magnetic modulation of topological polarization singularities in momentum space. Opt. Lett., 47, 2754(2022).

    [76] C. Huang et al. Ultrafast control of vortex microlasers. Science, 367, 1018(2020).

    [77] Y. Hu et al. Spatiotemporal lineshape tailoring in bic-mediated reconfigurable metamaterials. Adv. Funct. Mater., 32, 2203680(2022).

    [78] L. Huang, W. Zhang, X. Zhang. Moiré quasibound states in the continuum. Phys. Rev. Lett., 128, 253901(2022).

    [79] Z. Chen et al. Observation of miniaturized bound states in the continuum with ultra-high quality factors. Sci. Bull., 67, 359(2022).

    [80] A. Overvig, N. Yu, A. Alù. Chiral quasi-bound states in the continuum. Phys. Rev. Lett., 126, 073001(2021).

    [81] A. Tittl et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360, 1105(2018).

    [82] Z. Liu et al. High-q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett., 123, 253901(2019).

    [83] X. Wang et al. Controlling light absorption of graphene at critical coupling through magnetic dipole quasi-bound states in the continuum resonance. Phys. Rev. B, 102, 155432(2020).

    [84] S. Han et al. Extended bound states in the continuum with symmetry-broken terahertz dielectric metasurfaces. Adv. Opt. Mater., 9, 2002001(2021).

    [85] L. Kühner et al. Radial bound states in the continuum for polarization-invariant nanophotonics. Nat. Commun., 13, 4992(2022).

    [86] Y. Zhang et al. Unfolded band structures of photonic quasicrystals and moiré superlattices. Phys. Rev. B, 105, 165304(2022).

    [87] H. Tang et al. On-chip light trapping in bilayer moiré photonic crystal slabs. Appl. Phys. Lett., 121, 231702(2022).

    [88] H. Tang et al. Experimental probe of twist angle–dependent band structure of on-chip optical bilayer photonic crystal. Sci. Adv., 9, eadh8498(2023).

    [89] F. Wang et al. Automatic optimization of miniaturized bound states in the continuum cavity. Opt. Express, 31, 123846(2023).

    [90] Y. Ren et al. Low-threshold nanolasers based on miniaturized bound states in the continuum. Sci. Adv., 8, eade8817(2022).

    [91] H. Zhong et al. Ultra-low threshold continuous-wave quantum dot mini-BIC lasers. Light Sci. Appl., 12, 100(2023).

    [92] Y. Chen et al. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys., 4, 113(2022).

    [93] M. V. Gorkunov, A. A. Antonov, Y. S. Kivshar. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys. Rev. Lett., 125, 093903(2020).

    [94] J. Dixon et al. Self-isolated raman lasing with a chiral dielectric metasurface. Phys. Rev. Lett., 126, 123201(2021).

    [95] J. Wu et al. Observation of giant extrinsic chirality empowered by quasi-bound states in the continuum. Phys. Rev. Appl., 16, 064018(2021).

    [96] M. V. Gorkunov et al. Bound states in the continuum underpin near-lossless maximum chirality in dielectric metasurfaces. Adv. Opt. Mater., 9, 2100797(2021).

    [97] T. Shi et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat. Commun., 13, 4111(2022).

    [98] Y. Lim et al. Maximally chiral emission via chiral quasibound states in the continuum. Laser Photonics Rev., 17, 2200611(2023).

    [99] Y. Tang et al. Chiral bound states in the continuum in plasmonic metasurfaces. Laser Photonics Rev., 17, 2200597(2023).

    [100] X. Huang et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater., 10, 582(2011).

    [101] Y. Li et al. On-chip zero-index metamaterials. Nat. Photonics, 9, 738(2015).

    [102] M. Minkov et al. Zero-index bound states in the continuum. Phys. Rev. Lett., 121, 263901(2018).

    [103] H. Tang et al. Low-loss zero-index materials. Nano Lett., 21, 914(2021).

    [104] T. Dong et al. Ultra-low-loss on-chip zero-index materials. Light Sci. Appl., 10, 10(2021).

    [105] D. I. Vulis et al. Monolithic cmos-compatible zero-index metamaterials. Opt. Express, 25, 12381(2017).

    [106] Z. Zhang et al. Negative refraction mediated by bound states in the continuum. Photonics Res., 9, 1592(2021).

    [107] S. Lepeshov, M. Yesmantovich, A. Bogdanov. Topological enhancement of evanescent field localization in all-dielectric metasurfaces. Optica, 10, 797(2023).

    [108] S. Yang et al. Nanoparticle trapping in a quasi-BIC system. ACS Photonics, 8, 1961(2021).

    [109] Y. Shi et al. Multifunctional virus manipulation with large-scale arrays of all-dielectric resonant nanocavities. Laser Photonics Rev., 16, 2100197(2022).

    [110] E. Bulgakov, A. Sadreev. Precise size sorting of nanoparticles by bound states in the continuum in a dual finite grating. Opt. Lett., 48, 4705(2023).

    [111] S. Yang, J. C. Ndukaife. Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface. Light Sci. Appl., 12, 188(2023).

    [112] Z. Dong et al. Schrödinger’s red pixel by quasi-bound-states-in-the-continuum. Sci. Adv., 8, eabm4512(2022).

    [113] F. Wu et al. Giant enhancement of the goos-hänchen shift assisted by quasibound states in the continuum. Phys. Rev. Appl., 12, 014028(2019).

    [114] M. Liu, D.-Y. Choi. Extreme huygens’ metasurfaces based on quasi-bound states in the continuum. Nano Lett., 18, 8062(2018).

    [115] Y. Li et al. A platform for integrated spectrometers based on solution-processable semiconductors. Light Sci. Appl., 12, 184(2023).

    [116] F. Goos, H. Hänchen. Ein neuer und fundamentaler versuch zur totalreflexion. Ann. Phys., 436, 333(1947).

    [117] L.-G. Wang, H. Chen, S.-Y. Zhu. Large negative goos–hänchen shift from a weakly absorbing dielectric slab. Opt. Lett., 30, 2936(2005).

    [118] L.-G. Wang, S.-Y. Zhu. Giant lateral shift of a light beam at the defect mode in one-dimensional photonic crystals. Opt. Lett., 31, 101(2006).

    [119] J. Wang et al. Shifting beams at normal incidence via controlling momentum-space geometric phases. Nat. Commun., 12, 6046(2021).

    [120] S. Du et al. Realization of large transmitted goos–hänchen shifts with high (near 100%) transmittance based on a coupled double-layer grating system. Opt. Lett., 48, 1710(2023).

    [121] B. Wang et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics, 14, 623(2020).

    [122] W. Liu et al. Ways to achieve efficient non-local vortex beam generation. Nanophotonics, 10, 4297(2021).

    [123] T. Li et al. High-efficiency nonlocal reflection-type vortex beam generation based on bound states in the continuum. Natl. Sci. Rev., 10, nwac234(2023).

    [124] L. Kang et al. High-harmonic optical vortex generation from photonic bound states in the continuum. Adv. Opt. Mater., 10, 2101497(2022).

    [125] M. Notomi. Topology in momentum space becomes real. Nat. Photonics, 14, 595(2020).

    [126] J. Wang, L. Shi, J. Zi. Spin hall effect of light via momentum-space topological vortices around bound states in the continuum. Phys. Rev. Lett., 129, 236101(2022).

    [127] M. Kang et al. Coherent full polarization control based on bound states in the continuum. Nat. Commun., 13, 4536(2022).

    [128] H. Qin et al. Exploiting extraordinary topological optical forces at bound states in the continuum. Sci. Adv., 8, eade7556(2022).

    [129] K. Y. Bliokh et al. Spin–orbit interactions of light. Nat. Photonics, 9, 796(2015).

    [130] Y. Guo, M. Xiao, S. Fan. Topologically protected complete polarization conversion. Phys. Rev. Lett., 119, 167401(2017).

    [131] Y. Guo et al. Arbitrary polarization conversion with a photonic crystal slab. Adv. Opt. Mater., 7, 1801453(2019).

    [132] F. Chen et al. Observation of topologically enabled complete polarization conversion. Laser Photonics Rev., 17, 2200626(2023).

    [133] H. J. Kimble. The quantum internet. Nature, 453, 1023(2008).

    [134] M. S. Tame et al. Quantum plasmonics. Nat. Phys., 9, 329(2013).

    [135] O. Benson. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature, 480, 193(2011).

    [136] Z. Qian et al. Spontaneous emission in micro-or nanophotonic structures. PhotoniX, 2, 1(2021).

    [137] A. Rahimi-Iman. Polariton Physics(2020).

    [138] C. Cohen-Tannoudji, S. Reynaud. Dressed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam. J. Phys. B, 10, 345(1977).

    [139] P. Meystre, M. Sargent. Elements of Quantum Optics(2007).

    [140] A. Amo, J. Bloch. Exciton-polaritons in lattices: a non-linear photonic simulator. C.R. Phys., 17, 934(2016).

    [141] D. Sanvitto, S. Kéna-Cohen. The road towards polaritonic devices. Nat. Mater., 15, 1061(2016).

    [142] K. Daskalakis et al. Nonlinear interactions in an organic polariton condensate. Nat. Mater., 13, 271(2014).

    [143] M. Skolnick, T. Fisher, D. Whittaker. Strong coupling phenomena in quantum microcavity structures. Semicond. Sci. Technol., 13, 645(1998).

    [144] R. Tao et al. Room-temperature observation of trapped exciton-polariton emission in GaN/AlGaN microcavities with air-gap/iii-nitride distributed bragg reflectors. ACS Photonics, 3, 1182(2016).

    [145] F. Wang et al. Fundamentals and applications of topological polarization singularities. Front. Phys., 10, 198(2022).

    [146] J. Bloch et al. Strongly correlated electron–photon systems. Nature, 606, 41(2022).

    [147] V. Ardizzone et al. Polariton Bose–Einstein condensate from a bound state in the continuum. Nature, 605, 447(2022).

    [148] E. Maggiolini et al. Strongly enhanced light–matter coupling of monolayer WS2 from a bound state in the continuum. Nat. Mater., 22, 964(2023).

    [149] Y. Wang et al. Directional emission from electrically injected exciton–polaritons in perovskite metasurfaces. Nano Lett., 23, 4431(2023).

    [150] P. Lodahl, S. Mahmoodian, S. Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys., 87, 347(2015).

    [151] K. Koshelev et al. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum. Phys. Rev. B, 98, 161113(2018).

    [152] V. Kravtsov et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci. Appl., 9, 56(2020).

    [153] S. Cao et al. Normal-incidence-excited strong coupling between excitons and symmetry-protected quasi-bound states in the continuum in silicon nitride–ws2 heterostructures at room temperature. J. Phys. Chem. Lett., 11, 4631(2020).

    [154] I. A. Al-Ani et al. Enhanced strong coupling of TMDC monolayers by bound state in the continuum. Laser Photonics Rev., 15, 2100240(2021).

    [155] J. Wu, Y. M. Qing. Strong coupling of excitons in patterned few-layer WS2 with guided mode and bound state in the continuum. Phys. Chem. Chem. Phys., 24, 233820(2022).

    [156] M. Qin et al. Strong coupling between excitons and magnetic dipole quasi-bound states in the continuum in WS2-TiO2 hybrid metasurfaces. Opt. Express, 29, 180266(2021).

    [157] M. Qin et al. Strong coupling between excitons and quasibound states in the continuum in bulk transition metal dichalcogenides. Phys. Rev. B, 107, 045417(2023).

    [158] P. Xie et al. Strong coupling between excitons in a two-dimensional atomic crystal and quasibound states in the continuum in a two-dimensional all-dielectric asymmetric metasurface. Phys. Rev. B, 104, 125446(2021).

    [159] X. Gu et al. Polaritonic coherent perfect absorption based on self-hybridization of a quasi-bound state in the continuum and exciton. Opt. Express, 31, 4691(2023).

    [160] X. Zong et al. Enhanced light–matter interactions in ultrathin transition-metal-dichalcogenide metasurfaces by magnetic and toroidal dipole bound states in the continuum. Opt. Express, 30, 431047(2022).

    [161] P. Xie et al. Cavity-assisted boosting of self-hybridization between excitons and photonic bound states in the continuum in multilayers of transition metal dichalcogenides. Phys. Rev. B, 107, 075415(2023).

    [162] T. Weber et al. Intrinsic strong light–matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces. Nat. Mater., 22, 970(2023).

    [163] L. Lu et al. Engineering a light–matter strong coupling regime in perovskite-based plasmonic metasurface: quasi-bound state in the continuum and exceptional points. Photonics Res., 8, A91-A100(2020).

    [164] I. A. Al-Ani et al. Strong coupling of exciton and high-q mode in all-perovskite metasurfaces. Adv. Opt. Mater., 10, 2101120(2022).

    [165] X. Xu, S. Jin. Strong coupling of single quantum dots with low-refractive-index/high-refractive-index materials at room temperature. Sci. Adv., 6, eabb3095(2020).

    [166] Z. Zhen et al. Strong coupling between colloidal quantum dots and a microcavity with hybrid structure at room temperature. Photonics Res., 10, 913(2022).

    [167] D. Bosomtwi, V. E. Babicheva. Beyond conventional sensing: Hybrid plasmonic metasurfaces and bound states in the continuum. Nanomaterials, 13, 1261(2023).

    [168] K. Sun et al. Strong coupling between quasi-bound states in the continuum and molecular vibrations in the mid-infrared. Nanophotonics, 11, 4221(2022).

    [169] A. A. Bogdanov et al. Bound states in the continuum and fano resonances in the strong mode coupling regime. Adv. Photonics, 1, 1(2019).

    [170] N. Solodovchenko et al. Bound states in the continuum in strong-coupling and weak-coupling regimes under the cylinder–ring transition. Nanophotonics, 10, 4347(2021).

    [171] P. Xie et al. Tunable interactions of quasibound states in the continuum with cavity mode in a metasurface-microcavity hybrid. Phys. Rev. B, 106, 165408(2022).

    [172] A. Imamog et al. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. Phys. Rev. A, 53, 4250(1996).

    [173] S. Pau et al. Observation of a laserlike transition in a microcavity exciton polariton system. Phys. Rev. A, 54, R1789(1996).

    [174] J. Kasprzak et al. Bose–Einstein condensation of exciton polaritons. Nature, 443, 409(2006).

    [175] C. Schneider et al. An electrically pumped polariton laser. Nature, 497, 348(2013).

    [176] H. Deng, H. Haug, Y. Yamamoto. Exciton-polariton Bose–Einstein condensation. Rev. Mod. Phys., 82, 1489(2010).

    [177] I. Carusotto, C. Ciuti. Quantum fluids of light. Rev. Mod. Phys., 85, 299(2013).

    [178] T. Byrnes, N. Y. Kim, Y. Yamamoto. Exciton–polariton condensates. Nat. Phys., 10, 803(2014).

    [179] L. Kappei et al. Direct observation of the Mott transition in an optically excited semiconductor quantum well. Phys. Rev. Lett., 94, 147403(2005).

    [180] N. Mott. Metal-Insulator Transitions(2004).

    [181] A. Rahimi-Iman. Nichtlineare Effekte in III/V Quantenfilm-Mikroresonatoren: Von dynamischer Bose-Einstein-Kondensation hin zum elektrisch betriebenen Polariton-Laser(2013).

    [182] J. D. Plumhof et al. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nat. Mater., 13, 247(2014).

    [183] S. Utsunomiya et al. Observation of Bogoliubov excitations in exciton-polariton condensates. Nat. Phys., 4, 700(2008).

    [184] X. Wu et al. Room-temperature bound states in the continuum polariton condensation(2023).

    [185] M. Amthor et al. Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity. Opt. Express, 22, 31146(2014).

    [186] H. Deng et al. Condensation of semiconductor microcavity exciton polaritons. Science, 298, 199(2002).

    [187] M. Richard et al. Spontaneous coherent phase transition of polaritons in CdTe microcavities. Phys. Rev. Lett., 94, 187401(2005).

    [188] S. Christopoulos et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett., 98, 126405(2007).

    [189] F. Li et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys. Rev. Lett., 110, 196406(2013).

    [190] R. Su et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett., 17, 3982(2017).

    [191] S. Dufferwiel et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun., 6, 8579(2015).

    [192] A. M. Berghuis et al. Room temperature exciton–polariton condensation in silicon metasurfaces emerging from bound states in the continuum. Nano Lett., 23, 5603(2023).

    [193] L. Carletti et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys. Rev. Lett., 121, 033903(2018).

    [194] K. Koshelev et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science, 367, 288(2020).

    [195] J. Wang et al. Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum. Optica, 7, 1126(2020).

    [196] T. Santiago-Cruz et al. Resonant metasurfaces for generating complex quantum states. Science, 377, 991(2022).

    [197] Z. Liu et al. Giant enhancement of continuous wave second harmonic generation from few-layer gase coupled to high-q quasi bound states in the continuum. Nano Lett., 21, 7405(2021).

    [198] L. Xu et al. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators. Adv. Sci., 6, 1802119(2019).

    [199] K.-H. Kim, J.-R. Kim. High-q chiroptical resonances by quasi-bound states in the continuum in dielectric metasurfaces with simultaneously broken in-plane inversion and mirror symmetries. Adv. Opt. Mater., 9, 2101162(2021).

    [200] K. Koshelev et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics, 6, 1639(2019).

    [201] M. Imada et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Appl. Phys. Lett., 75, 316(1999).

    [202] Y. Kurosaka et al. On-chip beam-steering photonic-crystal lasers. Nat. Photonics, 4, 447(2010).

    [203] C. Peng et al. Three-dimensional coupled-wave theory analysis of a centered-rectangular lattice photonic crystal laser with a transverse-electric-like mode. Phys. Rev. B, 86, 035108(2012).

    [204] K. Ishizaki, M. De Zoysa, S. Noda. Progress in photonic-crystal surface-emitting lasers. Photonics, 6, 96(2019).

    [205] D. Ohnishi et al. Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser. Opt. Express, 12, 1562(2004).

    [206] E. Miyai et al. Lasers producing tailored beams. Nature, 441, 946(2006).

    [207] H. Matsubara et al. Gan photonic-crystal surface-emitting laser at blue-violet wavelengths. Science, 319, 445(2008).

    [208] K. Hirose et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics, 8, 406(2014).

    [209] M. Yoshida et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater., 18, 121(2019).

    [210] R. Morita et al. Photonic-crystal lasers with two-dimensionally arranged gain and loss sections for high-peak-power short-pulse operation. Nat. Photonics, 15, 311(2021).

    [211] R. Sakata et al. Dually modulated photonic crystals enabling high-power high-beam-quality two-dimensional beam scanning lasers. Nat. Commun., 11, 3487(2020).

    [212] M. Yoshida et al. High-brightness scalable continuous-wave single-mode photonic-crystal laser. Nature, 618, 727(2023).

    [213] S. T. Ha et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol., 13, 1042(2018).

    [214] M.-S. Hwang et al. Ultralow-threshold laser using super-bound states in the continuum. Nat. Commun., 12, 4135(2021).

    [215] A. Kodigala et al. Lasing action from photonic bound states in continuum. Nature, 541, 196(2017).

    [216] R. Contractor et al. Scalable single-mode surface-emitting laser via open-dirac singularities. Nature, 608, 692(2022).

    [217] M. Wu et al. Room-temperature lasing in colloidal nanoplatelets via mie-resonant bound states in the continuum. Nano Lett., 20, 6005(2020).

    [218] K. Rong et al. Spin-valley rashba monolayer laser. Nat. Mater., 22, 1085(2023).

    [219] Y. Chen et al. Compact spin-valley-locked perovskite emission. Nat. Mater., 22, 1065(2023).

    [220] W. Liu et al. All-optical tuning of fano resonance for quasi-BIC and terahertz sensing applications. Appl. Sci., 12, 4207(2022).

    [221] W. Chen et al. Dual-resonance sensing for environmental refractive index based on quasi-BIC states in all-dielectric metasurface. Nanophotonics, 12, 1147(2023).

    [222] B. Duan et al. High-Q quasi-BIC in photonic crystal nanobeam for ultrahigh sensitivity refractive index sensing. Results Phys., 47, 106304(2023).

    [223] T. C. Tan et al. Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing. Adv. Mater., 33, 2100836(2021).

    [224] X. Liu et al. Terahertz metasurfaces based on bound states in the continuum (BIC) for high-sensitivity refractive index sensing. Optik, 261, 169248(2022).

    [225] Z. Li et al. Ultrasensitive terahertz sensing in all-dielectric asymmetric metasurfaces based on quasi-BIC. J Opt. Soc. Am. B, 39, 286(2022).

    [226] Y. Wang et al. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics, 10, 1295(2021).

    [227] J. Wang et al. Quasi- BIC-governed light absorption of monolayer transition-metal dichalcogenide-based absorber and its sensing performance. J. Phys. D, 54, 485106(2021).

    [228] J. Zhao, L. Zhang, Y. Li. Superior terahertz sensing metasurface based on ultrahigh-Q toroidal dipole governed by quasi-BIC. Europhys. Lett., 139, 55001(2022).

    [229] X. Tu et al. Ultrahigh Q polymer microring resonators for biosensing applications. IEEE Photonics J., 11, 4200110(2019).

    [230] Y.-F. Xiao et al. High-Q exterior whispering-gallery modes in a metal-coated microresonator. Phys. Rev. Lett., 105, 153902(2010).

    [231] W.-C. Lai et al. Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors. Appl. Phys. Lett., 102, 041111(2013).

    [232] C. Nicolaou et al. Enhanced detection limit by dark mode perturbation in 2d photonic crystal slab refractive index sensors. Opt. Express, 21, 31698(2013).

    [233] M. Lee, P. M. Fauchet. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt. Express, 15, 4530(2007).

    [234] S. Wang et al. Optofluidic fano resonance photonic crystal refractometric sensors. Appl. Phys. Lett., 110, 091105(2017).

    [235] C. Kang et al. Photonic crystal slab sensor with enhanced surface area. Opt. Express, 18, 279307(2010).

    [236] M. Huang et al. Sub-wavelength nanofluidics in photonic crystal sensors. Opt. Express, 17, 242243(2009).

    [237] D. Dorfner et al. Photonic crystal nanostructures for optical biosensing applications. Biosens. Bioelectron., 24, 3688(2009).

    [238] A. Leitis et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv., 5, eaaw2871(2019).

    [239] Y. Jahani et al. Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nat. Commun., 12, 3246(2021).

    [240] H.-H. Hsiao et al. Ultrasensitive refractive index sensing based on the quasi-bound states in the continuum of all-dielectric metasurfaces. Adv. Opt. Mater., 10, 2200812(2022).

    [241] Y. Chen et al. Integrated molar chiral sensing based on high-q metasurface. Nano Lett., 20, 8696(2020).

    [242] W. Cen et al. High-q fano terahertz resonance based on bound states in the continuum in all-dielectric metasurface. Appl. Surf. Sci., 575, 151723(2022).

    [243] W. Cen et al. Ultrasensitive flexible terahertz plasmonic metasurface sensor based on bound states in the continuum. IEEE Sens. J., 22, 12838(2022).

    [244] R. Ahmed et al. Large-scale functionalized metasurface-based SARS-CoV-2 detection and quantification. ACS Nano, 16, 159468(2022).

    [245] S. Romano et al. Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor. Opt. Express, 27, 18776(2019).

    [246] J. Lv et al. High-sensitive refractive index sensing enabled by topological charge evolution. IEEE Photonics J., 12, 4501610(2020).

    [247] K. Koshelev et al. Enhanced circular dichroism and chiral sensing with bound states in the continuum, FTh4C–6(2019).

    [248] Y. Hu et al. Quasi-bound states in the continuum enabled strong terahertz chiroptical response in bilayer metallic metasurfaces. Crystals, 12, 1052(2022).

    [249] W. Heiss. Repulsion of resonance states and exceptional points. Phys. Rev. E, 61, 929(2000).

    [250] C. Dembowski et al. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett., 86, 787(2001).

    [251] S.-B. Lee et al. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett., 103, 134101(2009).

    [252] W. Chen et al. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192(2017).

    [253] F. Yesilkoy et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics, 13, 390(2019).

    [254] M. Meudt et al. Hybrid photonic–plasmonic bound states in continuum for enhanced light manipulation. Adv. Opt. Mater., 8, 2000898(2020).

    [255] D. Yang et al. Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors. J. Opt. Soc. Am. B, 30, 2027(2013).

    [256] A. Di Falco, L. O’faolain, T. Krauss. Chemical sensing in slotted photonic crystal heterostructure cavities. Appl. Phys. Lett., 94, 063503(2009).

    [257] S. Romano et al. Optical biosensors based on photonic crystals supporting bound states in the continuum. Materials, 11, 526(2018).

    [258] S. Romano et al. Ultrasensitive surface refractive index imaging based on quasi-bound states in the continuum. ACS Nano, 14, 15417(2020).

    [259] H. Altug et al. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol., 17, 5(2022).

    [260] M. L. Tseng et al. Dielectric metasurfaces enabling advanced optical biosensors. ACS Photonics, 8, 47(2020).

    [261] M. L. Solomon et al. Nanophotonic platforms for chiral sensing and separation. Acc. Chem. Res., 53, 588(2020).

    [262] J. Mur-Petit, R. A. Molina. Chiral bound states in the continuum. Phys. Rev. B, 90, 035434(2014).

    [263] A. C. Overvig, S. C. Malek, N. Yu. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett., 125, 017402(2020).

    [264] S. C. Malek et al. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces. Light Sci. Appl., 11, 246(2022).

    [265] Y. Zhou et al. Multiresonant nonlocal metasurfaces. Nano Lett., 23, 1530(2023).

    [266] A. C. Overvig et al. Zone-folded quasi-bound state metasurfaces with customized, symmetry-protected energy-momentum relations. ACS Photonics, 10, 1832(2023).

    [267] H. Hu et al. Catalytic metasurfaces empowered by bound states in the continuum. ACS Nano, 16, 130578(2022).

    [268] H. Wang et al. Ultra-low-loss optical interconnect enabled by topological unidirectional guided resonance(2023).

    [269] Y. Zhang et al. Momentum-space imaging spectroscopy for the study of nanophotonic materials. Sci. Bull., 66, 824(2021).

    [270] L. Shi et al. Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space. Appl. Phys. Lett., 97, 251111(2010).

    [271] E. C. Regan et al. Direct imaging of isofrequency contours in photonic structures. Sci. Adv., 2, e1601591(2016).

    [272] T. Zhang et al. Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum. Nat. Commun., 14, 6014(2023).

    [273] L. Yuan et al. Synthetic dimension in photonics. Optica, 5, 1396(2018).

    [274] P. Forn-Díaz et al. Ultrastrong coupling regimes of light–matter interaction. Rev. Mod. Phys., 91, 025005(2019).

    [275] N. Rivera, I. Kaminer. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys., 2, 538(2020).

    [276] A. Aigner et al. Plasmonic bound states in the continuum to tailor light–matter coupling. Sci. Adv., 8, eadd4816(2022).

    [277] A. P. Anthur et al. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett., 20, 8745(2020).

    [278] I. S. Sinev et al. Observation of ultrafast self-action effects in quasi- BIC resonant metasurfaces. Nano Lett., 21, 8848(2021).

    [279] G. Yang et al. Optical bound states in the continuum enabled by magnetic resonances coupled to a mirror. Nano Lett., 22, 2001(2022).

    [280] L. Qu et al. Giant second harmonic generation from membrane metasurfaces. Nano Lett., 22, 9652(2022).

    [281] X. Zhang et al. Quasi-bound states in the continuum enhanced second-harmonic generation in thin-film lithium niobate. Laser Photonics Rev., 16, 2200031(2022).

    [282] A. Grudinina et al. Collective excitations of a bound-in-the-continuum condensate. Nat. Commun., 14, 3464(2023).

    [283] A. E. Miroshnichenko et al. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun., 6, 8069(2015).

    [284] W. Liu, J. Zhang, A. E. Miroshnichenko. Toroidal dipole-induced transparency in core–shell nanoparticles. Laser Photonics Rev., 9, 564(2015).

    [285] K. Koshelev et al. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics, 8, 725(2019).

    [286] Z. Yu et al. Photonic integrated circuits with bound states in the continuum. Optica, 6, 1342(2019).

    [287] A. S. Solntsev, G. S. Agarwal, Y. S. Kivshar. Metasurfaces for quantum photonics. Nat. Photonics, 15, 327(2021).

    Jiajun Wang, Peishen Li, Xingqi Zhao, Zhiyuan Qian, Xinhao Wang, Feifan Wang, Xinyi Zhou, Dezhuan Han, Chao Peng, Lei Shi, Jian Zi. Optical bound states in the continuum in periodic structures: mechanisms, effects, and applications[J]. Photonics Insights, 2024, 3(1): R01
    Download Citation