• Photonics Research
  • Vol. 12, Issue 6, 1303 (2024)
Yanxian Guo1,2, Ye Liu1,4, Chaocai Luo3, Yue Zhang3..., Yang Li3, Fei Zhou1, Zhouyi Guo3, Zhengfei Zhuang3 and Zhiming Liu3,*|Show fewer author(s)
Author Affiliations
  • 1School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
  • 2Department of Physics, University of Science and Technology of China, Hefei 230026, China
  • 3MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • 4e-mail: liuye@dgut.edu.cn
  • show less
    DOI: 10.1364/PRJ.522216 Cite this Article Set citation alerts
    Yanxian Guo, Ye Liu, Chaocai Luo, Yue Zhang, Yang Li, Fei Zhou, Zhouyi Guo, Zhengfei Zhuang, Zhiming Liu, "Instantaneous preparation of gold-carbon dot nanocomposites for on-site SERS identification of pathogens in diverse interfaces," Photonics Res. 12, 1303 (2024) Copy Citation Text show less
    References

    [1] S. R. Lockhart, A. Chowdhary, J. A. W. Gold. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat. Rev. Microbiol., 21, 818-832(2023).

    [2] S. Bolten, A. Belias, K. A. Weigand. Population dynamics of Listeria spp., Salmonella spp., and Escherichia coli on fresh produce: a scoping review. Compr. Rev. Food Sci. Food Saf., 22, 4537-4572(2023).

    [3] E. D. Sonnenburg, J. L. Sonnenburg. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol., 17, 383-390(2019).

    [4] S. Li, Y. He, D. A. Mann. Global spread of Salmonella Enteritidis via centralized sourcing and international trade of poultry breeding stocks. Nat. Commun., 12, 5109(2021).

    [5] A. Zhu, S. Ali, T. Jiao. Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens. Compr. Rev. Food Sci. Food Saf., 22, 1466-1494(2023).

    [6] H. Shin, B. H. Choi, O. Shim. Single test-based diagnosis of multiple cancer types using exosome-SERS-AI for early stage cancers. Nat. Commun., 14, 1644(2023).

    [7] T. Tian, J. Yi, Y. Liu. Self-assembled plasmonic nanoarrays for enhanced bacterial identification and discrimination. Biosens. Bioelectron., 197, 113778(2022).

    [8] W. Liu, L. Wei, D. Wang. Phenotyping bacteria through a black-box approach: amplifying surface-enhanced Raman spectroscopy spectral differences among bacteria by inputting appropriate environmental stress. Anal. Chem., 94, 6791-6798(2022).

    [9] R. You, Q. Huang, Z. Lin. Preparation of SERS base membrane with cellulose compound dopamine and determination of hypochlorite. Microchim. Acta, 190, 447(2023).

    [10] D. M. Allen, G. G. Einarsson, M. M. Tunney. Characterization of bacteria using surface-enhanced Raman spectroscopy (SERS): influence of microbiological factors on the SERS spectra. Anal. Chem., 94, 9327-9335(2022).

    [11] M. Alafeef, P. Moitra, D. Pan. Nano-enabled sensing approaches for pathogenic bacterial detection. Biosens. Bioelectron., 165, 112276(2020).

    [12] X.-Y. Du, C.-F. Wang, G. Wu. The rapid and large-scale production of carbon quantum dots and their integration with polymers. Angew. Chem. Int. Ed., 60, 8585-8595(2021).

    [13] Y. Zhao, Y. Li, P. Zhang. Cell-based fluorescent microsphere incorporated with carbon dots as a sensitive immunosensor for the rapid detection of Escherichia coli O157 in milk. Biosens. Bioelectron., 179, 113057(2021).

    [14] R. Das, N. Singh. Exploring electrochemistry of carbon nanodots and its application in noninvasive bacterial growth monitoring. Biosens. Bioelectron., 144, 111640(2019).

    [15] Y. Fu, G. Zeng, C. Lai. Hybrid architectures based on noble metals and carbon-based dots nanomaterials: a review of recent progress in synthesis and applications. Chem. Eng. J., 399, 125743(2020).

    [16] N. Gong, X. Ma, X. Ye. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol., 14, 379-387(2019).

    [17] Q. J. Zhou, Y. J. Fang, J. Y. Li. A design strategy of dual-ratiomentric optical probe based on europium-doped carbon dots for colorimetric and fluorescent visual detection of anthrax biomarker. Talanta, 222, 121548(2021).

    [18] L. Li, J. Jin, J. Liu. Accurate SERS monitoring of the plasmon mediated UV/visible/NIR photocatalytic and photothermal catalytic process involving Ag@carbon dots. Nanoscale, 13, 1006-1015(2021).

    [19] A. Wang, C. Guan, G. Shan. A nanocomposite prepared from silver nanoparticles and carbon dots with peroxidase mimicking activity for colorimetric and SERS-based determination of uric acid. Microchim. Acta, 186, 644(2019).

    [20] P. Luo, C. Li, G. Shi. Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Phys. Chem. Chem. Phys., 14, 7360-7366(2012).

    [21] S. K. Bhunia, L. Zeiri, J. Manna. Carbon-dot/silver-nanoparticle flexible SERS-active films. ACS Appl. Mater. Interfaces, 8, 25637-25643(2016).

    [22] G. Bodelón, V. Montes-García, V. López-Puente. Detection and imaging of quorum sensing in pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat. Mater., 15, 1203-1211(2016).

    [23] X. Xu, X. Hu, F. Fu. DNA-induced assembly of silver nanoparticle decorated cellulose nanofiber: a flexible surface-enhanced Raman spectroscopy substrate for the selective charge molecular detection and wipe test of pesticide residues in fruits. ACS Sustain. Chem. Eng., 9, 5217-5229(2021).

    [24] P. Li, W. Zhang, C. Lu. Robust kernel principal component analysis with optimal mean. Neural Netw., 152, 347-352(2022).

    [25] C.-N. Li, Y.-F. Qi, D. Zhao. F-norm two-dimensional linear discriminant analysis and its application on face recognition. Int. J. Intell. Syst., 37, 8327-8347(2022).

    [26] Q. Zhu, S. Jiang, K. Ye. Hydrogen-doping-induced metal-like ultrahigh free-carrier concentration in metal-oxide material for giant and tunable plasmon resonance. Adv. Mater., 32, 2004059(2020).

    [27] Y. Liu, J. H. Lei, G. Wang. Toward strong near-infrared absorption/emission from carbon dots in aqueous media through solvothermal fusion of large conjugated perylene derivatives with post-surface engineering. Adv. Sci., 9, 2202283(2022).

    [28] S. Sun, Q. Chen, Z. Tang. Tumor microenvironment stimuli-responsive fluorescence imaging and synergistic cancer therapy by carbon-dot–Cu2+ nanoassemblies. Angew. Chem. Int. Ed., 59, 21041-21048(2020).

    [29] X. Miao, S. Wen, Y. Su. Graphene quantum dots wrapped gold nanoparticles with integrated enhancement mechanisms as sensitive and homogeneous substrates for surface-enhanced Raman spectroscopy. Anal. Chem., 91, 7295-7303(2019).

    [30] R. T. Lawrence, C. Lu, M. P. Croxall. Facile oxidation reaction to produce monolayered highly crystalline nitrogen-doped graphene quantum dots. Appl. Surf. Sci., 578, 151919(2022).

    [31] T. Wang, S. Wang, Z. Cheng. Emerging core–shell nanostructures for surface-enhanced Raman scattering (SERS) detection of pesticide residues. Chem. Eng. J., 424, 130323(2021).

    [32] L. Cao, M. Zan, F. Chen. Formation mechanism of carbon dots: from chemical structures to fluorescent behaviors. Carbon, 194, 42-51(2022).

    [33] B. Sharma, S. Tanwar, T. Sen. One pot green synthesis of Si quantum dots and catalytic Au nanoparticle–Si quantum dot nanocomposite. ACS Sustain. Chem. Eng., 7, 3309-3318(2019).

    [34] Y. Zhan, Y. Liu, H. Zu. Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy. Nanoscale, 10, 5997-6004(2018).

    [35] Y. Guo, Z. Zhuang, Z. Liu. Facile hot spots assembly on molybdenum oxide nanosheets via in situ decoration with gold nanoparticles. Appl. Surf. Sci., 480, 1162-1170(2019).

    [36] M. Alle, S. C. Park, R. Bandi. Rapid in-situ growth of gold nanoparticles on cationic cellulose nanofibrils: recyclable nanozyme for the colorimetric glucose detection. Carbohydr. Polym., 253, 117239(2021).

    [37] S. Cong, Z. Wang, W. Gong. Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability. Nat. Commun., 10, 678(2019).

    [38] Y. Gu, Y. Li, H. Qiu. Recent progress on noble-free substrates for surface-enhanced Raman spectroscopy analysis. Coord. Chem. Rev., 497, 215425(2023).

    [39] Y. Kane. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag., 14, 302-307(1966).

    [40] J. Bian, Q. Li, C. Huang. A durable surface-enhanced Raman scattering substrate: ultrathin carbon layer encapsulated Ag nanoparticle arrays on indium-tin-oxide glass. Phys. Chem. Chem. Phys., 17, 14849-14855(2015).

    [41] C. Ji, J. Lu, B. Shan. The origin of Mo2C films for surface-enhanced Raman scattering analysis: electromagnetic or chemical enhancement?. J. Phys. Chem. Lett., 13, 8864-8871(2022).

    [42] J. Tan, B. Du, C. Ji. Thermoelectric field-assisted Raman scattering and photocatalysis with GaN-plasmonic metal composites. ACS Photon., 10, 2216-2225(2023).

    [43] Y. Liu, H. Ma, X. X. Han. Metal–semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Mater. Horiz., 8, 370-382(2021).

    [44] X. Jiang, X. Sun, D. Yin. Recyclable Au–TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect. Phys. Chem. Chem. Phys., 19, 11212-11219(2017).

    [45] M. Shao, C. Ji, J. Tan. Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response. Opto-Electron. Adv., 6, 230094(2023).

    [46] B. Yao, S.-W. Huang, Y. Liu. Gate-tunable frequency combs in graphene–nitride microresonators. Nature, 558, 410-414(2018).

    [47] I. Salzmann, G. Heimel, M. Oehzelt. Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules. Acc. Chem. Res., 49, 370-378(2016).

    [48] K. Wang, Z. Guo, Y. Li. Few-layer NbTe2 nanosheets as substrates for surface-enhanced Raman scattering analysis. ACS Appl. Nano Mater., 3, 11363-11371(2020).

    [49] Y. Zhao, Y. Xu, X. Jing. SERS-active plasmonic metal NP-CsPbX3 films for multiple veterinary drug residues detection. Food Chem., 412, 135420(2023).

    [50] Q. Chu, B. Han, Y. Jin. Surface plasmon resonance induced charge transfer effect on the Ag-ZnSe-PATP system. Spectrochim. Acta A, 248, 119167(2021).

    [51] J. R. Lombardi, R. L. Birke. A unified approach to surface-enhanced Raman spectroscopy. J. Phys. Chem. C, 112, 5605-5617(2008).

    [52] T. Man, W. Lai, C. Zhu. Perovskite mediated vibronic coupling of semiconducting SERS for biosensing. Adv. Funct. Mater., 32, 2201799(2022).

    [53] J. Libertucci, V. B. Young. The role of the microbiota in infectious diseases. Nat. Microbiol., 4, 35-45(2019).

    [54] D. Mohanty, M. Suar, S. K. Panda. Nanotechnological interventions in bacteriocin formulations–advances, and scope for challenging food spoilage bacteria and drug-resistant foodborne pathogens. Crit. Rev. Food Sci. Nutr., 1-18(2023).

    [55] Z. Pei, J. Li, C. Ji. Flexible cascaded wire-in-cavity-in-bowl structure for high-performance and polydirectional sensing of contaminants in microdroplets. J. Phys. Chem. Lett., 14, 5932-5939(2023).

    [56] A. Walter, A. März, W. Schumacher. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip, 11, 1013-1021(2011).

    [57] F. S. de Siqueira e Oliveira, A. M. da Silva, M. T. T. Pacheco. Biochemical characterization of pathogenic bacterial species using Raman spectroscopy and discrimination model based on selected spectral features. Laser Med. Sci., 36, 289-302(2021).

    [58] J. Jehlička, H. G. M. Edwards, A. Oren. Raman spectroscopy of microbial pigments. Appl. Environ. Microbiol., 80, 3286-3295(2014).

    [59] M. Kashif, M. I. Majeed, H. Nawaz. Surface-enhanced Raman spectroscopy for identification of food processing bacteria. Spectrochim. Acta A, 261, 119989(2021).

    [60] M. L. Paret, S. K. Sharma, L. M. Green. Biochemical characterization of gram-positive and gram-negative plant-associated bacteria with micro-Raman spectroscopy. Appl. Spectrosc., 64, 433-441(2010).

    [61] R. M. Jarvis, A. Brooker, R. Goodacre. Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Anal. Chem., 76, 5198-5202(2004).

    [62] D. Kusić, B. Kampe, P. Rösch. Identification of water pathogens by Raman microspectroscopy. Water Res., 48, 179-189(2014).

    [63] A. C. S. Talari, Z. Movasaghi, S. Rehman. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev., 50, 46-111(2015).

    [64] M. Tang, G. D. McEwen, Y. Wu. Characterization and analysis of mycobacteria and Gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR, and atomic force microscopy. Anal. Bioanal. Chem., 405, 1577-1591(2013).

    [65] B. S. Luo, M. Lin. A portable Raman system for the identification of foodborne pathogenic bacteria. J. Rapid Methods Autom. Microbiol., 16, 238-255(2008).

    [66] X. Yang, C. Gu, F. Qian. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal. Chem., 83, 5888-5894(2011).

    [67] N. A. Mungroo, G. Oliveira, S. Neethirajan. SERS based point-of-care detection of food-borne pathogens. Microchim. Acta, 183, 697-707(2016).

    [68] H. Félix Rivera, R. González, G. D. M. Rodríguez. Improving SERS detection of bacillus thuringiensis using silver nanoparticles reduced with hydroxylamine and with citrate capped borohydride. Int. J. Spectrosc., 2011, 989504(2011).

    [69] K. C. Schuster, E. Urlaub, J. R. Gapes. Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture. J. Microbiol. Methods, 42, 29-38(2000).

    Yanxian Guo, Ye Liu, Chaocai Luo, Yue Zhang, Yang Li, Fei Zhou, Zhouyi Guo, Zhengfei Zhuang, Zhiming Liu, "Instantaneous preparation of gold-carbon dot nanocomposites for on-site SERS identification of pathogens in diverse interfaces," Photonics Res. 12, 1303 (2024)
    Download Citation