[3] Ning F, Tan J, Zhang Z, et al. Nodular corrosion inside the crevice of Alloy 690 in deaerated high - temperature chloride solution[J]. Corrosion Science, 2021, 185: 109442.
[5] Wang Y, Zhao S, Gao W, et al. Microstructure and properties of laser cladding FeCrBSi composite powder coatings with higher Cr content[J]. Journal of Materials Processing Technology, 2014, 214(4): 899-905.
[7] Colopi M, Ali Gkhan Demir, Caprio L, et al. Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104: 2473-2486.
[9] Kohei A, Masahiro T, Yoshihisa S, et al. Laser metal deposition of pure copper on stainless steel with blue and IR diode lasers[J]. Optics & Laser Technology, 2018, 107: 291-296.
[10] Abdelhafiz M, Al-Rubaie K S, Emadi A, et al. Process-structure property relationships of copper parts manufactured by laser powder bed fusion[J]. Materials, 2021, 14(11): 2945.
[11] Nair A, Adam K M. Studies on effect of laser processed Stellite 6 material and its electrochemical behavior[J]. Optik - International Journal for Light and Electron Optics, 2020, 220: 165221.
[18] Ning F, Tan J, Zhang Z, et al. Crevice corrosion behaviors of Alloy 690 and 405 stainless steel in chloride solutions containing different concentrations of thiosulfate[J]. Journal of Nuclear Materials, 2023, 575: 154226.
[19] Peng L, Zhang Z, Tan J, et al. Effects of boric acid and lithium hydroxide on the corrosion behaviors of 316LN stainless steel in simulating hot functional test high-temperature pressurized water[J]. Corrosion Science, 2022, 198: 110157.