
- High Power Laser Science and Engineering
- Vol. 12, Issue 3, 03000e33 (2024)
Abstract
1. Introduction
The continuous technical and scientific improvement of lasers[1,2] has led to stable short-pulse PW-class high-repetition-rate titanium:sapphire (Ti:Sa) systems[3,4]. If these lasers are tightly focused onto matter, the relativistic interaction yields forward-acceleration of electrons[5] that in turn can trigger pulsed bright ion beams by well-known mechanisms such as target normal sheath acceleration (TNSA)[6,7], radiation pressure acceleration (RPA)[8] and others[9] that are beneficial to isotope production[10], positron emission tomography[11], ion beam microscopy[12] and particle-induced X-ray emission (PIXE)[13], as well as inertial confinement fusion[14]. The mechanisms rely on the build-up of large accelerating potentials, which are also the source of ultra-strong electromagnetic pulses (EMPs)[15]. In particular, targets attain a strong positive net-charge due to laser-accelerated electrons that are able to escape the rising potential barrier[16]. As a result of this, kA-level discharge pulses and return currents can be produced and propagate over the target surface[17]. Interest in these effects is twofold: (i) both are sensitive to the total amount of charge that leaves the target and therefore can be used as a passive diagnostic of the laser–target interaction; and (ii) both allow one to deliver all-optically generated ns-duration kA-level current pulses that can be understood as a novel secondary source.
Note that ns-duration current pulses can also be generated by non-relativistic ns-duration laser pulses of high energy in the wide range of several A up to the MA level[18–20]. Here, the long laser pulses are issued in the single-shot regime and interact with tailor-made single-shot targets, building up a charge separation that triggers a return current to rise.
The monitoring of target discharge is an important aspect of ultrahigh intensity laser–solid interaction at high repetition rates. This paper presents an inductive current monitor as metrology for high-voltage pulses driven at high repetition rates. The measurement of return currents with inductive current monitors has been demonstrated previously in the regime of ns-driver lasers with intensities from
Sign up for High Power Laser Science and Engineering TOC. Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
Pulses of kA-level at ns-duration pose a risk for electronic systems in the vicinity of the interaction[22,23], but they also have an application in the context of proton beam focusing[24,25] and transient magnetic field generation[17]. We demonstrate here for the first time the stable generation of discharge pulses, with a clear perspective to obtain a novel high-repetition-rate source of kA-scale current pulses for future applications, for example, in the field of electromagnetic compatibility (EMC) tests[26], radio-location[27], military technologies[28], biology[29] and medicine[30].
2. Materials and methods
The primary diagnostic used in this study was a target charging monitor (TCM) constructed based on the principles of an inductive current monitor[21]. The TCM measures the derivative of the current that streams through the device, as shown in Figure 1. The key advantage of this metrology technique is its destruction-free nature. Current pulses are excited by laser–plasma interaction on a solid-density target, transported through the TCM and can be applied after their characterization.
Figure 1.Tape target system (left) and cut of the target charging monitor (TCM; right). The TCM has two opposite miniature high voltage Bayonet Neill-Concelman radio-frequency (MHV-BNC) connectors with soldered pins to pass through the pulsed current issued by relativistic laser interaction in the top to the application side in the bottom. The TCM comprises a solid copper body forming a cup with a cylindrical top; both of which are later separated by dielectric material polyoxymethylene (POM). The through current induces a magnetic field enclosed in the cylinder, which causes an induced current to flow in a small squared loop formed by the core of an RG142 coaxial cable connected to an output SMA connector. The current pulse itself is issued by the discharge of the solid tape target and coupled into one of the insulated support rods of the tape, which are connected to an RG142 coaxial cable leading to the TCM via an MHV-BNC connector on the system’s chassis. The other support rod is isolated from the ground.
Current pulses that pass through the TCM device induce a magnetic field inside the cylindrical copper body, which causes an induced current to flow in a coil-shaped rod connected to an coaxial output. The calibration factor, which relates the time-integrated voltage to the current, is
Experiments for this work are conducted at the VEGA-3 laser facility at Centro de Láseres Pulsados (CLPU) with high-power Ti:Sa laser pulses amplified to an energy
The tape target system, TaTaS-PW[31], transported aluminium tape of 10(1) μm thickness, Kapton tape of 89(9) μm thickness, tape of 10(1) μm aluminium enforced with Kapton (Al-e-K)[31] and copper tape of 7(1) μm thickness across the laser focal plane. The tapes are 12.5 mm wide stripes. The conductive 5 mm diameter support metal rods that guide the tape are 16 mm separated. Solid-density targets are placed in the laser focus position and tilted by 12.5
Numerical simulations are performed to compare experimental results to theoretical predictions. The laser-driven target discharge is simulated with ChoCoLaT-2[16] (see Appendix B) and the laser-absorption efficiency into hot electrons is studied with the particle-in-cell (PIC) code Simulating Matter Irradiated by Light at Extreme Intensities (SMILEI)[34] (see Appendix C).
3. Results and discussion
We firstly show results from a single, representative shot on an aluminium target to emphasize different aspects of the platform, and secondly study the effect of changes of laser and target parameters based on single-shot data and high-repetition-rate recordings.
The inductive TCM device measures the derivative
Figure 2.The circuit-corrected signal of the TCM for an aluminium target exhibits a clear positive peak for the rising edge of the positive current pulse. It is preceded by a low-noise pedestal and followed by pulses streaming from the grounding to the target: first the EMP-induced noise and second the reflection of the current pulse at the impedance mis-matched the ground. The time-base at the TCM relative to laser arrival is approximately equal to 0 ns.
After application of the instrument calibration, the temporally integrated signal is as shown in Figure 3. The peak amplitude reaches 1123(172) A. The FWHM
Figure 3.Current pulse (blue line) from an aluminium target retrieved by numerical integration from the derivative measured with the TCM. A first short primary peak is followed by a superposition of peaks in a broad secondary peak. The time-base relative to laser arrival is approximately equal to 0 ns. The zero-level is controlled by comparison to a fit from before to after the current pulse (orange dashed line) – here in good agreement.
Further temporal integration of
Figure 4.The transported charge from an aluminium target as obtained by numerical double-integration of the derivative measured by the TCM. The integral attains a plateau only slowly due to a slightly negative tail of the return current. The time-base relative to laser arrival is approximately equal to 0 ns.
For control of the accuracy of the numerical integrations, the zero-level is compared to a fit of both plateaus before and after the current pulse, shown as the orange dashed line in Figure 3. Here, the zero-level is maintained.
Crucial for applications, the current pulse is reproducible over hundreds of shots and is consistent with theoretical estimates. A current of 558(116) A is obtained in
Figure 5.Average current and its standard deviation as obtained in laser shots of
W cm
at 1 Hz onto copper tape. The time-base relative to laser arrival is approximately equal to 0 ns. Multiple reflections across the conductive target yield a succession of multiple peaks.
ChoCoLaT-2 simulations predict 720(75) nC of target discharge when assuming 68% of the laser energy on target to be absorbed into electrons. Simulations take into account the experimental uncertainty for the pulse duration (33(2) fs), 6.8(3) J of laser energy within the first Airy disk and 4.1(3) J distributed in three non-negligible hot spots with an average intensity of 24% of the main intensity. The absorption efficiency into electrons is consistent with PIC simulations (see Appendix C). Such high values have been reported[35], depending on the presence of pre-plasma. If, however, the 2D PIC simulations should overestimate the absorption or no pre-plasma is present, a typical[36,37] absorption of 50% would still lead to an agreement with overlapping uncertainty intervals.
A comparison of the metallic targets above to a dielectric target reveals the likely influence of target reflections and shows how we can produce single-peak current pulses. A current of 597(153) A is obtained in
Compared to the measurement for Kapton targets, simulations with ChoCoLaT-2 indicate a
Sign up for High Power Laser Science and Engineering TOC. Get the latest issue of High Power Laser Science and Engineering delivered right to you!Sign up now
Figure 6.Average current and its standard deviation as obtained in laser shots of
W cm
at 0.5 Hz onto Kapton tape. The dielectric target allows one to produce single pulses. The time-base relative to laser arrival is approximately equal to 0 ns.
It becomes clear that the current evolution and the amount of total charge vary considerably under variation of the target parameters. For a further parametric study on the variation of laser intensity, shots on aluminium tape, Kapton tape, tape of aluminium enforced with Kapton (Al-e-K)[31] and copper tape are compared in Figure 7(a). Most charge is ejected from aluminium targets, followed by copper and Kapton. Shots on aluminium reveal a monotonic relation between target discharge and intensity from
Figure 7.(a) Total charge measured under variation of laser pulse duration, energy and the target material. (b)–(d) Select data obtained at best laser compression: (b) comparison with a semi-empirical model to derive the total charge from and a material constant; (c) spectral cut-off energies for protons in the target normal direction compared to available modelling[38]; (d) the relation between target charge and proton cut-off energy.
Figure 7(b) shows the amount of total charge under variation of the laser energy
The thermalizing electron cloud is foundational to TNSA, which motivates an investigation of the relation between the return current and the sheath field based on properties of TNSA ions. The cut-off energy for TNSA-accelerated protons is obtained from a Thomson parabola ion spectrometer[40] positioned towards the nominal target normal direction; see Figure 7(c) for the same shots as in Figure 7(b). Figure 7(c) shows a proportionality between the proton cut-off energy and the total amount of charge.
Tape | Al | Al-e-K | Cu |
---|---|---|---|
538(45) | 520(16) | 256(26) |
Table 1. Comparison of the proportionality factor in the scaling model
for aluminium tape (Al), Kapton-reinforced aluminium tape (Al-e-K) and copper tape (Cu).
The distribution of accelerated ions was successfully modelled in the regime relevant to this work[38], with the maximum energy of ions with charge
Figure 8.Average current and its standard deviation as obtained in laser shots of
W cm
at 1 Hz onto Al-e-K tape. The time-base relative to laser arrival is approximately equal to 0 ns.
Laser pulse | Target | Current pulse | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Energy | Duration | Rate | Tape | Material | Thickness | Peak | Charge | Energy | ||
22.0(3) J | 33(2) fs | 0.5 Hz | Al | Al | 10(1) μm | 982(185) A | 2.2(2) μC | 58(9) mJ | 0.32% | |
21.9(3) J | 37(4) fs | 1 Hz | 25 | Al-e-K | Al | 10(1) μm | 809(210) A | 2.1(3) μC | 45(8) mJ | 0.25% |
22.9(2) J | 33(2) fs | 0.5 Hz | 100 | Kapton | Kapton | 89(9) μm | 597(153) A | 0.93(19) μC | 13(4) mJ | 0.06% |
24.5(3) J | 33(2) fs | 1 Hz | 292 | Cu | Cu | 7(1) μm | 558(116) A | 0.71(6) μC | 11(2) mJ | 0.05% |
Table 2. Comparison of current pulses from shots on aluminium tape (Al), Kapton-reinforced aluminium tape (Al-e-K), Kapton tape (Kapton) and copper tape (Cu). Laser energy is measured after the compressor, denotes the number of shots of the sequence and
is the ratio of energy confined in the current pulse to laser energy on target.
In order to relate target discharge and proton cut-off energy, both models are combined to deduce
Note the geometry of the Al-e-K tape: two 5 mm wide strips of 89 μm thick Kapton are glued on top of the aluminium tape at both its edges on the side facing the support metal rods. This Kapton reinforcement of aluminium is at mm-distance from the interaction zone, so it does not change the total amount of ejected charge (consistent with the experimental measurements in Figure 7(a)). However, in Figure 7(c) the proton cut-off energy in the spectrometer appears to be lower for Al-e-K tape than for aluminium tape. A tilt of the Al-e-K tape could have caused the proton cone to be not perfectly aligned towards the detector, resulting in a drop of detected maximum energy (as the highest energies have the smallest divergence in the TNSA scheme[9]). Such tilts are readily explained by tensions in the multi-layer structure. The temporal shape of the current pulse can, however, be influenced by the Kapton enforcement for Al-e-K tape (see Figure 8 (compared to Figure 3)). The first peak is lower, which is consistent with the reduced coupling to the grounding due to the presence of Kapton at the tape edges. As a result, the secondary peaks in the tail are elevated for reasons of more charge in reflections.
The characteristic parameters for all shot sequences are compared in Table 2. Current pulses from aluminium tape and reinforced aluminium tape are in a good agreement. Results for aluminium tapes exhibit higher current amplitudes when compared to copper targets due to a larger target discharge.
The bandwidth of the current pulse is large and allows for applications that require broadband pulses[27] (see Figure 9). Such pulses can be applied to steering antenna arrays or impulse radiating antennas to emit high power levels, that is, in ground and subsurface radars for finding, recognition and reconstruction of moving objects.
Figure 9.Average power spectrum density and its standard deviation as obtained in laser shots of
W cm
at 1 Hz onto Al-e-K tape. The time-base relative to laser arrival is approximately equal to 0 ns.
4. Conclusions
We report the first generation and characterization of short-pulsed kA-scale currents induced by high-power relativistic laser interaction at a high repetition rate. The pulses with several 100 ps FWHM show less than 10% stability in amplitude and a high energy conversion efficiency up to the order of 1% from laser energy to pulse energy. Although the conversion efficiency of laser energy to electrical current can be one order of magnitude higher for kJ-class (ns-duration) laser pulses, fs-duration systems have the advantage of a high repetition rate and (potentially) more stable interaction conditions. Optimization of the energy conversion efficiency in relativistic interactions will be possible by optimizing the target discharge based on existing theoretical models[16], as the experimental data appear to agree well with simulations. Another advantage of the presented scheme is that it allows carrying the electrical impulse by cable out of the interaction chamber, whereas non-relativistically generated current dynamics clings to the close vicinity of the laser–target interaction point. Current pulses can be tailored by modifying the target: experimental data show that the return current to metallic targets is broadened due to reflections across the target, whereas the use of dielectric targets removes those reflections, leading to the generation of an overall shorter pulse peak.
The highest charge of 2.2(2) μC is produced with aluminium targets, followed by Kapton targets with 0.93(19) μC and copper targets with 0.71(6) μC.
A direct application of such pulses can be the inductive generation of pulsed strong magnetic fields in small volumes. The pulse fills a solenoid if
Pulses of 1.1 kA in the
References
[1] T. H. Maiman. Nature, 187, 493(1966).
[2] M. DiDomenico, J. E. Geusic, H. M. Marcos, R. G. Smith. Appl. Phys. Lett., 8, 180(1966).
[3] P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou. IEEE J. Quantum Electron., 24, 398(1988).
[4] M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, H. Kiriyama. Opt. Lett., 28, 1594(2003).
[5] T. Tajima, V. Malka. Plasma Phys. Control. Fusion, 62, 034004(2012).
[6] R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, E. M. Campbell. Phys. Rev. Lett., 85, 14(2000).
[7] S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, R. A. Snavely. Phys. Plasmas, 8, 542(2001).
[8] T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, T. Tajima. Phys. Rev. Lett., 92, 175003(2004).
[9] M. Borghesi. Laser-Driven Sources of High Energy Particles and Radiation(2019).
[10] K. Nemoto, A. Maksimchuk, S. Banerjee, K. Flippo, G. Mourou, D. Umstadter, V. Y. Bychenkov. Appl. Phys. Lett., 78, 595(2001).
[11] M. I. K. Santala, M. Zepf, F. N. Beg, E. L. Clark, A. E. Dangor, K. Krushelnick, M. Tatarakis, I. Watts, K. W. D. Ledingham, T. McCanny, I. Spencer, A. C. Machacek, R. Allott, R. J. Clarke, P. A. Norreys. Appl. Phys. Lett., 78, 19(2001).
[12] F. E. Merrill, A. A. Golubev, F. G. Mariam, V. I. Turtikov, D. Varentsov. AIP Conf. Proc., 1195, 667(2009).
[13] F. Mirani, A. Maffini, F. Casamichiela, A. Pazzaglia, A. Formenti, D. Dellasega, V. Russo, D. Vavassori, D. Bortot, M. Huault, G. Zeraouli, V. Ospina, S. Malko, J. I. Apiñaniz, J. A. Pérez-Hernández, D. DeLuis, G. Gatti, L. Volpe, A. Pola, M. Passon. Sci. Adv., 7, 3(2021).
[14] M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, H. Powell. Phys. Rev. Lett., 86, 436(2001).
[15] F. Consoli, V. T. Tikhonchuk, M. Bardon, P. W. Bradford, D. C. Carroll, J. Cikhardt, M. Cipriani, R. J. Clarke, T. E. Cowan, C. N. Danson, R. De Angelis, M. De Marco, J.-L. Dubois, B. Etchessahar, A. Laso Garcia, D. I. Hillier, A. Honsa, W. Jiang, V. Kmetik, J. Krasa, Y. Li, F. Lubrano, P. McKenna, J. Metzkes-Ng, A. Poyé, I. Prencipe, P. Raczka, R. A. Smith, R. Vrana, N. C. Woolsey, E. Zemaityte, Y. Zhang, Z. Zhang, B. Zielbauer, D. Neely. High Power Laser Sci. Eng., e22(2020).
[16] A. Poyé, S. Hulin, J. Ribolzi, M. Bailly-Grandvaux, F. Lubrano-Lavaderci, M. Bardon, D. Raffestin, J. J. Santos, V. Tikhonchuk. Phys. Rev. E, 98, 033201(2018).
[17] M. Ehret, M. Bailly-Grandvaux, P. Korneev, J. I. Apinaniz, C. Brabetz, A. Morace, P. W. Bradford, E. d’Humieres, G. Schaumann, V. Bagnoud, S. Malko, K. Matveevskii, M. Roth, L. Volpe, N. C. Woolsey, J. J. Santos. Phys. Plasmas, 30, 013105(2023).
[18] S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, H. Azechi. Sci. Rep., 3, 1170(2013).
[19] J. J. Santos, M. Bailly-Grandvaux, M. Ehret, A. V. Arefiev, D. Batani, F. N. Beg, A. Calisti, S. Ferri, R. Florido, P. Forestier-Colleoni, S. Fujioka, M. A. Gigosos, L. Giuffrida, L. Gremillet, J. J. Honrubia, S. Kojima, P. Korneev, K. F. F. Law, J.-R. Marquès, A. Morace, C. Mossé, O. Peyrusse, S. Rose, M. Roth, S. Sakata, G. Schaumann, F. Suzuki-Vidal, V. T. Tikhonchuk, T. Toncian, N. Woolsey, Z. Zhang. Phys. Plasmas, 056705(2018).
[20] G. J. Williams, S. Patankar, D. A. Mariscal, V. T. Tikhonchuk, J. D. Bude, C. W. Carr, C. Goyon, M. A. Norton, B. B. Pollock, A. M. Rubenchik, G. F. Swadling, E. R. Tubman, J. D. Moody. J. Appl. Phys., 127, 083302(2020).
[21] J. Cikhardt, J. Krása, M. De Marco, M. Pfeifer, A. Velyhan, E. Krouský, B. Cikhardtová, D. Klír, K. Řezáč, J. Ullschmied, J. Skála, P. Kubeš, J. Kravárik. Rev. Sci. Instrum., 85, 103507(2014).
[22] P. W. Bradford, N. C. Woolsey, G. G. Scott, G. Liao, H. Liu, Y. Zhang, B. Zhu, C. Armstrong, S. Astbury, C. Brenner, P. Brummitt, F. Consoli, I. East, R. Gray, D. Haddock, P. Huggard, P. J. R. Jones, E. Montgomery, I. Musgrave, P. Oliveira, D. R. Rusby, C. Spindloe, B. Summers, E. Zemaityte, Z. Zhang, Y. Li, P. McKenna, D. Neely. High Power Laser Sci. Eng., e21(2018).
[23] J. L. Dubois, P. Raczka, S. Hulin, M. Rosiński, L. Ryć, P. Parys, A. Zaraś-Szydłowska, D. Makaruk, P. Tchórz, J. Badziak, J. Wołowski, J. Ribolzi, V. T. Tikhonchuk. Rev. Sci. Instrum., 89, 103301(2018).
[24] S. Kar, H. Ahmed, G. Nersisyan, S. Brauckmann, F. Hanton, A. L. Giesecke, K. Naughton, O. Willi, C. L. S. Lewis, M. Borghesi. Phys. Plasmas, 23, 055711(2016).
[25] M. Bardon, J. G. Moreau, L. Romagnani, C. Rousseaux, M. Ferri, F. Lefévre, I. Lantuéjoul, B. E. Bazzoli, D. Farcage. Plasma Phys. Control. Fusion, 62, 125019(2020).
[26] Y. Yan, T. Jiang, J. Chen, X. Liu, L. Meng, Z. Cheng, Z. Liu. Rev. Sci. Instrum., 89, 074703(2018).
[27] V. I. Koshelev, Y. I. Buyanov, B. M. Koval’chuk, Y. A. Andreev, V. P. Belichenko, A. M. Efremov, V. V. Plisko, K. N. Sukhushin, V. A. Vizir, V. B. Zorin. , , , , , , , , , , Proc. SPIE , ()., 3158, 209(1997).
[28] S.-H. Min, H. Jung, O. Kwon, M. Sattorov, S. Kim, S.-H. Park, D. Hong, S. Kim, C. Park, B. H. Hong, I. Cho, S. Ma, M. Kim, Y. J. Yoo, S. Y. Park, G.-S. Park. IEEE Access, 9, 136775(2021).
[29] K. H. Schoenbach, S. J. Hargrave, R. P. Joshi, J. F. Kolb, R. Nuccitelli, C. Osgood, A. Pakhomov, M. Stacey, R. J. Swanson, J. A. White, S. Xiao, J. Zhang, S. J. Beebe, P. F. Blackmore, E. S. Buescher. IEEE Trans. Dielectric. Electric. Insulat., 14(2007).
[30] A. Kiełbik, W. Szlasa, V. Novickij, A. Szewczyk, M. Maciejewska, J. Saczko, J. Kulbacka. Sci. Rep., 11, 15835(2021).
[31] M. Ehret, D. de Luis, J. I. Apiñaniz, J. L. Henares, R. Lera, J. A. Pérez-Hernández, P. Puyuelo-Valdes, L. Volpe, G. Gatti. Plasma Phys. Control. Fusion, 66, 045003(2024).
[32] L. Volpe, R. Fedosejevs, G. Gatti, J. A. Pérez-Hernández, C. Méndez, J. Apiñaniz, X. Vaisseau, C. Salgado, M. Huault, S. Malko, G. Zeraouli, V. Ospina, A. Longman, D. De Luis, K. Li, O. Varela, E. García, I. Hernández, J. D. Pisonero, J. G. Ajates, J. M. Alvarez, C. García, M. Rico, D. Arana, J. Hernández-Toro, L. Roso. High Power Laser Sci. Eng., e25(2019).
[33] M. Roth, M. SchollmeierProceedings of the CAS-CERN Accelerator School: Plasma Wake Acceleration. and , in (), p. ., 231(2016).
[34] J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai, J. Dargent, C. Riconda, M. Grech. Phys. Commun., 222, 351(2018).
[35] Y. Ping, R. Shepherd, B. F. Lasinski, M. Tabak, H. Chen, H. K. Chung, K. B. Fournier, S. B. Hansen, A. Kemp, D. A. Liedahl, K. Widmann, S. C. Wilks, W. Rozmus, M. Sherlock. Phys. Rev. Lett., 100, 085004(2008).
[36] J. Yu, Z. Jiang, J. C. Kieffer, A. Krol. Phys. Plasmas, 6, 1318(1999).
[37] M. H. Key, M. D. Cable, T. E. Cowan, K. G. Estabrook, B. A. Hammel, S. P. Hatchett, E. A. Henry, D. E. Hinkel, J. D. Kilkenny, J. A. Koch, W. L. Kruer, A. B. Langdon, B. F. Lasinski, R. W. Lee, B. J. MacGowan, A. MacKinnon, J. D. Moody, M. J. Moran, A. A. Offenberger, D. M. Pennington, M. D. Perry, T. J. Phillips, T. C. Sangster, M. S. Singh, M. A. Stoyer, M. Tabak, G. L. Tietbohl, M. Tsukamoto, K. Wharton, S. C. Wilks. Phys. Plasmas, 5(1998).
[38] M. Passoni, M. Lontano. Phys. Rev. Lett., 115001(2008).
[39] S. C. Wilks, W. L. Kruer, M. Tabak, A. B. Langdon. Phys. Rev. Lett., 69, 1383(1992).
[40] C. Salgado-López, A. Curcio, G. Gatti, J. L. Henares, J. I. Apiñaniz, J. A. P. Pérez-Hernández, L. Volpe, D. de LuisProceedings of the 11th International Beam Instrumentation Conference. , , , , , , , and , in (), p. ., 352(2022).
[41] S. Sakata, S. Lee, H. Morita, T. Johzaki, H. Sawada, Y. Iwasa, K. Matsuo, K. F. Farley Law, A. Yao, M. Hata, A. Sunahara, S. Kojima, Y. Abe, H. Kishimoto, A. Syuhada, T. Shiroto, A. Morace, A. Yogo, N. Iwata, M. Nakai, H. Sakagami, T. Ozaki, K. Yamanoi, T. Norimatsu, Y. Nakata, S. Tokita, N. Miyanaga, J. Kawanaka, H. Shiraga, K. Mima, H. Nishimura, M. Bailly-Grandvaux, J. J. Santos, H. Nagatomo, H. Azechi, R. Kodama, Y. Arikawa, Y. Sentoku, S. Fujioka. Nat. Commun., 9, 3937(2018).
[42] G. Pérez-Callejo, C. Vlachos, C. A. Walsh, R. Florido, M. Bailly-Grandvaux, X. Vaisseau, F. Suzuki-Vidal, C. McGuffey, F. N. Beg, P. Bradford, V. Ospina-Bohórquez, D. Batani, D. Raffestin, A. Colaïtis, V. Tikhonchuk, A. Casner, M. Koenig, B. Albertazzi, R. Fedosejevs, N. Woolsey, M. Ehret, A. Debayle, P. Loiseau, A. Calisti, S. Ferri, J. Honrubia, R. Kingham, R. C. Mancini, M. A. Gigosos, J. J. Santos. Phys. Rev. E, 035206(2022).
[43] C. A. Walsh, R. Florido, M. Bailly-Grandvaux, F. Suzuki-Vidal, J. P. Chittenden, A. J. Crilly, M. A. Gigosos, R. C. Mancini, G. Pérez-Callejo, C. Vlachos, C. McGuffey, F. N. Beg, J. J. Santos. Plasma Phys. Control. Fusion, 64, 025007(2022).
[44] T. Shao, K. Long, C. Zhang, P. Yan, S. Zhang, R. Pan. J. Phys., 215203(2008).
[45] J. M. Sanders, A. Kuthi, P. T. Vernier, Y.-H. Wu, C. Jiang, M. A. GundersenIEEE Pulsed Power Conference. , , , , , and , in (), p. ., 1418(2009).
[46] T. B. Naptonik, M. Reberšek, P. T. Vernier, B. Mali, D. Miklavčič. Bioelectrochemistry, 110, 1(2016).
[47] B. Greenebaum. Bioelectromagnetics, 43, 47(2022).
[48] A. Porcher, N. Wilmot, P. Bonnet, V. Procaccio, A. Vian. Bioelectromagnetics, 45, 4(2023).
[49] R. Fabbro, C. Max, E. Fabre. Phys. Fluids, 28, 1463(1985).
[50] F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, M. Tatarakis. Phys. Plasmas, 4, 447(1997).
[51] A. Poyé, J.-L. Dubois, F. Lubrano-Lavaderci, E. D’Humières, M. Bardon, S. Hulin, M. Bailly-Grandvaux, J. Ribolzi, D. Raffestin, J. J. Santos, P. Nicolaï, V. Tikhonchuk. Phys. Rev. E, 92, 043107(2015).

Set citation alerts for the article
Please enter your email address