• Frontiers of Optoelectronics
  • Vol. 9, Issue 3, 489 (2016)
Li LIU1, Yunhong DING2, Xinlun CAI3、4, Jianji DONG1、*, and Xinliang ZHANG1
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
  • 3State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yatsen University,Guangzhou 510275, China
  • 4Centre for Quantum Photonics, H. H. Wills Physics Laboratory, Department of Electrical and Electronic Engineering,University of Bristol, Bristol BS8 1UB, UK
  • show less
    DOI: 10.1007/s12200-016-0560-0 Cite this Article
    Li LIU, Yunhong DING, Xinlun CAI, Jianji DONG, Xinliang ZHANG. Route-asymmetrical light transmission of a fiber-chip-fiber optomechanical system[J]. Frontiers of Optoelectronics, 2016, 9(3): 489 Copy Citation Text show less
    References

    [1] Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A. On-chip optical isolation in monolithically integrated nonreciprocal optical resonators. Nature Photonics, 2011, 5(12): 758– 762

    [2] Shoji Y, Mizumoto T, Yokoi H, Hsieh I, Osgood R M. Magnetooptical isolator with silicon waveguides fabricated by direct bonding. Applied Physics Letters, 2008, 92(7): 071117-1–071117-3

    [3] Espinola R L, Izuhara T, Tsai M, Osgood RM, D tsch H. Magnetooptical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides. Optics Letters, 2004, 29(9): 941–943

    [4] Yokoi H, Mizumoto T, Shinjo N, Futakuchi N, Nakano Y. Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift. Applied Optics, 2000, 39(33): 6158–6164

    [5] Manipatruni S, Robinson J T, Lipson M. Optical nonreciprocity in optomechanical structures. Physical Review Letters, 2009, 102(21): 213903-1–213903-4

    [6] Shi Y, Yu Z, Fan S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nature Photonics, 2015, 9(6): 388–392

    [7] Kang M S, Butsch A, Russell P S J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nature Photonics, 2011, 5(9): 549–553

    [8] Lira H, Yu Z, Fan S, Lipson M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Physical Review Letters, 2012, 109(3): 033901-1–033901-5

    [9] Yu Z, Fan S. Complete optical isolation created by indirect interband photonic transitions. Nature Photonics, 2009, 3(2): 91–94

    [10] Aman H, Hussain B, Aman A. Laser diode corner pumped Nd: KGW slab laser. Frontiers of Optoelectronics, 2014, 7(1): 107–109

    [11] Min S, Liao S, Zou C, Zhang X, Dong J. Route-asymmetrical optical transmission and logic gate based on optical gradient force. Optics Express, 2014, 22(21): 25947–25952

    [12] Gallo K, Assanto G, Parameswaran K R, Fejer M M. All-optical diode in a periodically poled lithium niobate waveguide. Applied Physics Letters, 2001, 79(3): 314–316

    [13] Xu Q, Lipson M. All-optical logic based on silicon micro-ring resonators. Optics Express, 2007, 15(3): 924–929

    [14] Xu Q, Soref R. Reconfigurable optical directed-logic circuits using microresonator-based optical switches. Optics Express, 2011, 19(6): 5244–5259

    [15] Chu T, Yamada H, Ishida S, Arakawa Y. Compact 1 _ N thermooptic switches based on silicon photonic wire waveguides. Optics Express, 2005, 13(25): 10109–10114

    [16] Notomi M, Shinya A, Mitsugi S, Kira G, Kuramochi E, Tanabe T. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Optics Express, 2005, 13(7): 2678–2687

    [17] Pruessner M W, Stievater T H, Ferraro M S, Rabinovich W S. Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities. Optics Express, 2007, 15(12): 7557–7563

    [18] Fan L,Wang J, Varghese L T, Shen H, Niu B, Xuan Y,Weiner AM, Qi M. An all-silicon passive optical diode. Science, 2012, 335 (6067): 447–450

    [19] Fan L, Varghese L T, Wang J, Xuan Y, Weiner A M, Qi M. Silicon optical diode with 40 dB nonreciprocal transmission. Optics Letters, 2013, 38(8): 1259–1261

    [20] Tocci M D, Bloemer M J, Scalora M, Dowling J P, Bowden C M. Thin-film nonlinear optical diode. Applied Physics Letters, 1995, 66 (18): 2324–2326

    [21] Zhang Y, Li D, Zeng C, Huang Z, Wang Y, Huang Q, Wu Y, Yu J, Xia J. Silicon optical diode based on cascaded photonic crystal cavities. Optics Letters, 2014, 39(6): 1370–1373

    [22] Solja i M, Luo C, Joannopoulos J D, Fan S. Nonlinear photonic crystal microdevices for optical integration. Optics Letters, 2003, 28 (8): 637–639

    [23] Almeida V R, Lipson M. Optical bistability on a silicon chip. Optics Letters, 2004, 29(20): 2387–2389

    [24] Wurtz G A, Pollard R, Zayats A V. Optical bistability in nonlinear surface-plasmon polaritonic crystals. Physical Review Letters, 2006, 97(5): 057402-1–057402-4

    [25] Wang D, Zhou H, Guo M, Zhang J, Evers J, Zhu S. Optical diode made from a moving photonic crystal. Physical Review Letters, 2013, 110(9): 093901-1–093901-5

    [26] Liu V, Miller D A B, Fan S. Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect. Optics Express, 2012, 20(27): 28388–28397

    [27] Xue C, Jiang H, Chen H. Highly efficient all-optical diode action based on light-tunneling heterostructures. Optics Express, 2010, 18 (7): 7479–7487

    [28] Xu J, Zhuang X, Guo P, Huang W, Hu W, Zhang Q,Wan Q, Zhu X, Yang Z, Tong L, Duan X, Pan A. Asymmetric light propagation in composition-graded semiconductor nanowires. Scientific Reports, 2012, 2(11): 820-1–820-7

    [29] Wang J. A special issue on Information Optoelectronics: Devices, Technologies and Applications. Frontiers of Optoelectronics, 2014, 7(3): 263–264

    [30] Wachter E A, Thundat T, Oden P I, Warmack R J, Datskos P G, Sharp S L. Remote optical detection using microcantilevers. Review of Scientific Instruments, 1996, 67(10): 3434–3439

    [31] Datskos P G, Lavrik N V, Rajic S. Performance of uncooled microcantilever thermal detectors. Review of Scientific Instruments, 2004, 75(4): 1134–1148

    [32] Lavrik N V, Sepaniak M J, Datskos P G. Cantilever transducers as a platform for chemical and biological sensors. Review of Scientific Instruments, 2004, 75(7): 2229–2253

    [33] Ding Y, Peucheret C, Ou H, Yvind K. Fully etched apodized grating coupler on the SOI platform with – 0.58 dB coupling efficiency. Optics Letters, 2014, 39(18): 5348–5350

    [34] Taillaert D, Bienstman P, Baets R. Compact efficient broadband grating coupler for silicon-on-insulator waveguides. Optics Letters, 2004, 29(23): 2749–2751

    [35] Miller D A B. All linear optical devices are mode converters. Optics Express, 2012, 20(21): 23985–23993

    [36] Miller D A B. Self-aligning universal beam coupler. Optics Express, 2013, 21(5): 6360–6370

    Li LIU, Yunhong DING, Xinlun CAI, Jianji DONG, Xinliang ZHANG. Route-asymmetrical light transmission of a fiber-chip-fiber optomechanical system[J]. Frontiers of Optoelectronics, 2016, 9(3): 489
    Download Citation