• Advanced Photonics Nexus
  • Vol. 3, Issue 5, 056014 (2024)
Chen Liu1,2, Liang Xu1,2, Lei Zhang3, Chi Zhang1,2,*, and Xinliang Zhang1,2
Author Affiliations
  • 1Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Wuhan, China
  • 2Optics Valley Laboratory, Wuhan, China
  • 3Wuhan Vanjee Optoelectronic Technology Co., Ltd., Wuhan, China
  • show less
    DOI: 10.1117/1.APN.3.5.056014 Cite this Article Set citation alerts
    Chen Liu, Liang Xu, Lei Zhang, Chi Zhang, Xinliang Zhang, "Relative timing jitter compression in a Fabry–Pérot cavity-assisted free-running dual-comb interferometry," Adv. Photon. Nexus 3, 056014 (2024) Copy Citation Text show less
    References

    [1] J. L. Hall. Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys., 78, 1279-1295(2006).

    [2] T. Fortier et al. 20 years of developments in optical frequency comb technology and applications. Commun. Phys., 2, 153(2019).

    [3] S. A. Diddams et al. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [4] H. Leopardi et al. Single-branch Er:fiber frequency comb for precision optical metrology with 10–18 fractional instability. Optica, 4, 879-885(2017).

    [5] A. Rolland et al. Ultra-broadband dual-branch optical frequency comb with 10–18 instability. Optica, 5, 1070-1077(2018).

    [6] I. Codington et al. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [7] M. G. Suh et al. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [8] Z. Zhu et al. Dual-comb ranging. Engineering, 4, 772-778(2018).

    [9] T. Minamikawa et al. Dual-comb spectroscopic ellipsometry. Nat. Commun., 8, 610(2017).

    [10] Q. Wang et al. Dual-comb photothermal spectroscopy. Nat. Commun., 13, 2181(2022).

    [11] A. Asahara et al. Development of ultrafast time-resolved dual-comb spectroscopy. APL Photonics, 2, 041301(2017).

    [12] J. T. Friedlein et al. Dual-comb photoacoustic spectroscopy. Nat. Commun., 11, 3152(2020).

    [13] I. Coddington et al. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351-356(2009).

    [14] J. D. Deschênes et al. Synchronization of distant optical clocks at the femtosecond level. Phys. Rev. X, 6, 021016(2016).

    [15] M. Hyun et al. Femtosecond-precision electronic clock distribution in CMOS chips by injecting frequency comb-extracted photocurrent pulses. Nat. Commun., 14, 2345(2023).

    [16] H. Shi et al. Timing jitter of the dual-comb mode-locked laser: a quantum origin and the ultimate effect on high-speed time- and frequency-domain metrology. IEEE J. Sel. Top. Quantum Electron., 24, 5(2018).

    [17] R. Paschotta. Timing jitter and phase noise of mode-locked fiber lasers. Opt. Express, 18, 5041-5054(2010).

    [18] J. Kim et al. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics, 8, 465-540(2016).

    [19] R. Paschotta et al. Optical phase noise and carrier-envelope offset noise of mode-locked lasers. Appl. Phys. B Lasers Opt., 82, 265-273(2006).

    [20] N. Modsching et al. High-power dual-comb thin-disk laser oscillator for fast high-resolution spectroscopy. Opt. Express, 29, 15104-15113(2021).

    [21] R. Paschotta et al. Relative timing jitter measurements with an indirect phase comparison method. Appl. Phys. B Lasers Opt., 80, 185-192(2005).

    [22] M. J. W. Rodwell et al. Subpicosecond laser timing stabilization. IEEE J. Quantum Electron., 25, 817-827(1989).

    [23] S. L. Camenzind et al. Timing jitter characterization of free-running dual-comb laser with sub-attosecond resolution using optical heterodyne detection. Opt. Express, 30, 5075-5094(2022).

    [24] C. R. Phillips et al. Coherently averaged dual-comb spectroscopy with a low-noise and high-power free-running gigahertz dual-comb laser. Opt. Express, 31, 7103-7119(2023).

    [25] N. Prakash et al. Relative timing jitter in a counterpropagating all-normal dispersion dual-comb fiber laser. Optica, 9, 717-723(2022).

    [26] A. Mahjoubfar et al. Time stretch and its applications. Nat. Photonics, 11, 341-351(2017).

    [27] L. A. Sterczewski et al. Computational coherent averaging for free-running dual-comb spectroscopy,. Opt. Express, 27, 23875-23893(2019).

    [28] J. Roy et al. Continuous real-time correction and averaging for frequency comb interferometry. Opt. Express, 20, 21932-21939(2012).

    [29] C. Liu et al. A reference-free dual-comb spectroscopy calibrated by passive devices. APL Photonics, 8, 6(2023).

    [30] H. R. Telle et al. Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B Lasers Opt., 74, 1-6(2002).

    [31] N. R. Newbury et al. Low-noise fiber-laser frequency combs [Invited]. JOSA B, 24, 1756-1770(2007).

    [32] P. Giaccari et al. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt. Express, 16, 4347-4365(2008).

    [33] T. Yoshino et al. Fiber-optic Fabry-Perot interferometer and its sensor applications. IEEE Trans. Microw. Theory Tech., 30, 1612-1621(1982).

    [34] T. M. Fortier et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photonics, 5, 425-429(2011).

    [35] Y. Yao et al. Optical frequency divider with division uncertainty at the 10-21 level. Natl. Sci. Rev., 3, 463-469(2016).

    [36] T. Tetsumoto et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photonics, 15, 516-522(2021).

    [37] K. Tamura et al. Soliton versus nonsoliton operation of fiber ring lasers. Appl. Phys. Lett., 64, 149-151(1994).

    [38] P. Qin et al. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering. Opt. Express, 22, 28276-28283(2014).

    [39] D. Yu et al. Time-interval measurement with linear optical sampling at the femtosecond level. Photonics Res., 11, 2222-2230(2023).

    [40] N. B. Hebert et al. Self-correction limits in dual-comb interferometry. IEEE J. Quantum Electron., 55, 8700311(2019).

    [41] I. Coddington et al. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys. Rev. A - At. Mol. Opt. Phys., 82, 043817(2010).

    [42] G. Ycas et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2  μm. Nat. Photonics, 12, 202-208(2018). https://doi.org/10.1038/s41566-018-0114-7

    [43] G. C. Mellau et al. Near infrared emission spectrum of HCN. J. Mol. Spectrosc., 249, 23-42(2008).

    [44] L. S. Rothman et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 96, 139-204(2005).

    [45] M. Walsh et al. Pulse interaction induced systematic errors in dual comb spectroscopy. Opt. Express, 32, 19837-19853(2024).

    [46] G. Agrawal. Nonlinear Fiber Optics(2019).

    [47] H. Tian et al. Quasi-real-time dual-comb spectroscopy with 750-MHz Yb: fiber combs. Opt. Express, 30, 28427-28437(2022).

    [48] C. Zhang et al. Recent advances and outlook in single-cavity dual comb lasers. Photonics, 10, 221(2023).

    [49] R. Liao et al. Dual-comb generation from a single laser source: principles and spectroscopic applications towards mid-IR: a review. J. Phys. Photonics, 2, 042006(2020).

    [50] H. Yoshioka et al. Dual-wavelength mode-locked Yb: YAG ceramic laser in single cavity. Opt. Express, 18, 1479-1486(2010).

    [51] M. Kowalczyk et al. Dual-comb femtosecond solid-state laser with inherent polarization-multiplexing. Laser Photonics Rev., 15, 1-10(2021).

    [52] S. Saito et al. All-polarization-maintaining Er-doped dual comb fiber laser using single-wall carbon nanotubes. Opt. Express, 27, 17868-17975(2019).

    [53] H. Tian et al. Dual-comb spectroscopy using free-running mechanical sharing dual-comb fiber lasers. Appl. Phys. Lett., 121, 21(2022).

    [54] K. Fritsch et al. Dual-comb thin-disk oscillator. Nat. Commun., 13, 2584(2020).

    Chen Liu, Liang Xu, Lei Zhang, Chi Zhang, Xinliang Zhang, "Relative timing jitter compression in a Fabry–Pérot cavity-assisted free-running dual-comb interferometry," Adv. Photon. Nexus 3, 056014 (2024)
    Download Citation