[1] A. G. Bell. On the production and reproduction of sound by light. Am. J. Sci., s3-20, 305(1880).
[2] L. V. Wang. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics, 3, 503(2009).
[3] L. V. Wang, S. Hu. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 335, 1458(2012).
[4] C. Tian et al. Spatial resolution in photoacoustic computed tomography. Rep. Prog. Phys., 84, 036701(2021).
[5] C. Li, L. V. Wang. Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol., 54, R59(2009).
[6] S.-L. Chen, C. Tian. Recent developments in photoacoustic imaging and sensing for nondestructive testing and evaluation. Vis. Comput. Ind. Biomed. Art., 4, 1(2021).
[7] C. Tian et al. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography. Opt. Express, 25, 15947(2017).
[8] S. Li et al. Photoacoustic imaging of peripheral vessels in extremities by large-scale synthetic matrix array. J. Biomed. Opt., 29, S11519(2024).
[9] S. Liu et al. Validation of photoacoustic/ultrasound dual imaging in evaluating blood oxygen saturation. Biomed. Opt. Express, 13, 5551(2022).
[10] M. Yang et al. Synovial oxygenation at photoacoustic imaging to assess rheumatoid arthritis disease activity. Radiology, 306, 220(2023).
[11] S. Liu et al. On the imaging depth limit of photoacoustic tomography in the visible and first near-infrared windows. Opt. Express, 32, 5460(2024).
[12] S. Liu et al. In vivo photoacoustic sentinel lymph node imaging using clinically-approved carbon nanoparticles. IEEE Trans. Biomed. Eng., 67, 2033(2019).
[13] W. Pang et al. Direct monitoring of whole-brain electrodynamics via high-spatiotemporal-resolution photoacoustics with voltage-sensitive dye. Laser Photonics Rev., 2400165(2024).
[14] T. Bowen. Radiation-induced thermoacoustic soft tissue imaging, 817(1981).
[15] T. Bowen et al. Some experimental results on the thermoacoustic imaging of tissue equivalent phantom materials, 823(1981).
[16] T. Bowen. Radiation-induced thermoacoustic imaging. U.S. patent(1981).
[17] A. A. Oraevsky, S. L. Jacques, F. K. Tittel. Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves, 86(1993).
[18] A. A. Oraevsky et al. Laser-based optoacoustic imaging in biological tissues, 122(1994).
[19] A. A. Oraevsky et al. Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers, 198(1995).
[20] R. A. Kruger. Photoacoustic ultrasound. Med. Phys., 21, 127(1994).
[21] R. A. Kruger, P. Liu. Photoacoustic ultrasound: pulse production and detection in 0.5% liposyn. Med. Phys., 21, 1179(1994).
[22] R. A. Kruger et al. Photoacoustic ultrasound (PAUS) reconstruction tomography. Med. Phys., 22, 1605(1995).
[23] D. Finch, S. K. Patch, R. Rakesh. “Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal., 35, 1213(2004).
[24] M. Xu, L. V. Wang. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E, 71, 016706(2005).
[25] C. G. A. Hoelen et al. Three-dimensional photoacoustic imaging of blood vessels in tissue. Opt. Lett., 23, 648(1998).
[26] C. G. A. Hoelen et al. Photoacoustic blood cell detection and imaging of blood vessels in phantom tissue, 142(1998).
[27] M. Mozaffarzadeh et al. Double-stage delay multiply and sum beamforming algorithm: application to linear-array photoacoustic imaging. IEEE Trans. Biomed. Eng., 65, 31(2018).
[28] M. A. Lediju Bell et al. Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds. Biomed. Opt. Express, 4, 1964(2013).
[29] C.-K. Liao, M.-L. Li, P.-C. Li. Optoacoustic imaging with synthetic aperture focusing and coherence weighting. Opt. Lett., 29, 2506(2004).
[30] S. Paul, A. Thomas, M. S. Singh. Delay-and-sum-to-delay-standard-deviation factor: a promising adaptive beamformer. Opt. Lett., 46, 4662(2021).
[31] K. P. Köstli et al. Temporal backward projection of optoacoustic pressure transients using Fourier transform methods. Phys. Med. Biol., 46, 1863(2001).
[32] L. A. Kunyansky. A series solution and a fast algorithm for the inversion of the spherical mean Radon transform. Inverse Probl., 23, S11(2007).
[33] L. Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Prob. Imaging, 6, 111(2012).
[34] Y. Xu, L. V. Wang. Time reversal and its application to tomography with diffracting sources. Phys. Rev. Lett., 92, 033902(2004).
[35] P. Burgholzer et al. Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface. Phys. Rev. E, 75, 046706(2007).
[36] G. Paltauf et al. Iterative reconstruction algorithm for optoacoustic imaging. J. Acoust. Soc. Am., 112, 1536(2002).
[37] A. Rosenthal, D. Razansky, V. Ntziachristos. Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography. IEEE Trans. Med. Imaging, 29, 1275(2010).
[38] K. Wang et al. Discrete imaging models for three-dimensional optoacoustic tomography using radially symmetric expansion functions. IEEE Trans. Med. Imaging, 33, 1180(2014).
[39] K. Wang et al. An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging, 30, 203(2011).
[40] L. Ding, X. L. Deán-Ben, D. Razansky. Efficient 3-D model-based reconstruction scheme for arbitrary optoacoustic acquisition geometries. IEEE Trans. Med. Imaging, 36, 1858(2017).
[41] C. Huang et al. Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media. IEEE Trans. Med. Imaging, 32, 1097(2013).
[42] K. Wang et al. Accelerating image reconstruction in three-dimensional optoacoustic tomography on graphics processing units. Med. Phys., 40, 023301(2013).
[43] L. Ding, X. L. Deán-Ben, D. Razansky. Real-time model-based inversion in cross-sectional optoacoustic tomography. IEEE Trans. Med. Imaging, 35, 1883(2016).
[44] S. Antholzer, M. Haltmeier, J. Schwab. Deep learning for photoacoustic tomography from sparse data. Inverse Probl. Sci. Eng., 27, 987(2019).
[45] A. Hauptmann et al. Model-based learning for accelerated, limited-view 3-D photoacoustic tomography. IEEE Trans. Med. Imaging, 37, 1382(2018).
[46] N. Davoudi, X. L. Deán-Ben, D. Razansky. Deep learning optoacoustic tomography with sparse data. Nat. Mach. Intell., 1, 453(2019).
[47] S. Choi et al. Deep learning enhances multiparametric dynamic volumetric photoacoustic computed tomography in vivo (DL-PACT). Adv. Sci., 10, e2202089(2022).
[48] A. Hauptmann, B. Cox. Deep learning in photoacoustic tomography: current approaches and future directions. J. Biomed. Opt., 25, 112903(2020).
[49] H. Deng et al. Deep learning in photoacoustic imaging: a review. J. Biomed. Opt., 26, 040901(2021).
[50] P. Rajendran, A. Sharma, M. Pramanik. Photoacoustic imaging aided with deep learning: a review. Biomed. Eng. Lett., 12, 155(2022).
[51] S. Gutta et al. Deep neural network-based bandwidth enhancement of photoacoustic data. J. Biomed. Opt., 22, 1(2017).
[52] N. Awasthi et al. Deep neural network-based sinogram super-resolution and bandwidth enhancement for limited-data photoacoustic tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 2660(2020).
[53] P. Rajendran, M. Pramanik. Deep learning approach to improve tangential resolution in photoacoustic tomography. Biomed. Opt. Express, 11, 7311(2020).
[54] H. Zhang et al. Deep-E: a fully-dense neural network for improving the elevation resolution in linear-array-based photoacoustic tomography. IEEE Trans. Med. Imaging, 41, 1279(2021).
[55] C. Dehner et al. Deep-learning-based electrical noise removal enables high spectral optoacoustic contrast in deep tissue. IEEE Trans. Med. Imaging, 41, 3182(2022).
[56] H. Zhao et al. Deep learning enables superior photoacoustic imaging at ultralow laser dosages. Adv. Sci., 8, 2003097(2021).
[57] K. T. Hsu, S. Guan, P. V. Chitnis. Fast iterative reconstruction for photoacoustic tomography using learned physical model: Theoretical validation. Photoacoustics, 29, 100452(2023).
[58] T. Lu et al. LV-GAN: a deep learning approach for limited-view optoacoustic imaging based on hybrid datasets. J. Biophotonics, 14, e202000325(2021).
[59] X. Zhang et al. Sparse-sampling photoacoustic computed tomography: deep learning vs. compressed sensing. Biomed. Signal Process. Control, 71, 103233(2022).
[60] P. Kuchment, L. Kunyansky. Mathematics of thermoacoustic tomography. Eur. J. Appl. Math., 19, 191(2008).
[61] A. Rosenthal, V. Ntziachristos, D. Razansky. Acoustic inversion in optoacoustic tomography: a review. Curr. Med. Imaging Rev., 9, 318(2013).
[62] C. Lutzweiler, D. Razansky. Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification. Sensors, 13, 7345(2013).
[63] J. Poudel, Y. Lou, M. A. Anastasio. A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography. Phys. Med. Biol., 64, 14TR01(2019).
[64] X. L. Deán-Ben, D. Razansky. A practical guide for model-based reconstruction in optoacoustic imaging. Front. Phys., 10, 1057(2022).
[65] C. Yang et al. Review of deep learning for photoacoustic imaging. Photoacoustics, 21, 100215(2021).
[66] H. B. Yedder, B. Cardoen, G. Hamarneh. Deep learning for biomedical image reconstruction: a survey. Artif. Intell. Rev., 54, 215(2021).
[67] A. DiSpirito et al. Sounding out the hidden data: a concise review of deep learning in photoacoustic imaging. Exp. Biol. Med., 246, 1355(2021).
[68] J. Gröhl et al. Deep learning for biomedical photoacoustic imaging: a review. Photoacoustics, 22, 100241(2021).
[69] B. Cox et al. Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt., 17, 061202(2012).
[70] X. Tang, J. Fu, H. Qin. Microwave-induced thermoacoustic imaging with functional nanoparticles. J. Innov. Opt. Health Sci., 16, 2230014(2023).
[71] Q. Liu et al. Biomedical microwave-induced thermoacoustic imaging. J. Innov. Opt. Health Sci., 15, 2230007(2022).
[72] Z. Liang et al. Study on response of metal wire in thermoacoustic imaging. J. Innov. Opt. Health Sci., 15, 2250015(2022).
[73] X. Liang et al. Investigation of artifacts by mapping SAR in thermoacoustic imaging. J. Innov. Opt. Health Sci., 14, 2150011(2021).
[74] L. V. Wang, H. Wu. Biomedical Optics: Principles and Imaging(2007).
[75] B. T. Cox, P. C. Beard. Fast calculation of pulsed photoacoustic fields in fluids using k-space methods. J. Acoust. Soc. Am., 117, 3616(2005).
[76] American National. American National Standard for Safe Use of Lasers ANSI Z136.1-2007(2007).
[77] A. C. Tam. Applications of photoacoustic sensing techniques. Rev. Mod. Phys., 58, 381(1986).
[78] B. Cox, P. C. Beard. Modeling photoacoustic propagation in tissue using k-space techniques. Photoacoustic Imaging and Spectroscopy, 25(2017).
[79] H. Jiang. Fundamentals of photoacoustic tomography. Photoacoustic Tomography, 1(2015).
[80] L. V. Wang. Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Top. Quantum Electron., 14, 171(2008).
[81] C. Guo, C. S. Singh. Handbook of Laser Technology and Applications: Laser Applications: Medical, Metrology and Communication (volume four)(2021).
[82] C. Tian et al. Impact of system factors on the performance of photoacoustic tomography scanners. Phys. Rev. Appl., 13, 014001(2020).
[83] B. E. Treeby, B. T. Cox. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt., 15, 021314(2010).
[84] B. E. Treeby et al. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. J. Acoust. Soc. Am., 131, 4324(2012).
[85] N. N. Bojarski. The k-space formulation of the scattering problem in the time domain. J. Acoust. Soc. Am., 72, 570(1982).
[86] M. Tabei, T. D. Mast, R. C. Waag. A k-space method for coupled first-order acoustic propagation equations. J. Acoust. Soc. Am., 111, 53(2002).
[87] Z. Chenxi, T. Zhijian, T. Chao. Point spread function modeling for photoacoustic tomography–I: three-dimensional detection geometries. Opt. Express, 32, 1063(2024).
[88] C. Zhang, C. Chen, C. Tian. Point spread function modeling for photoacoustic tomography–II: Two-dimensional detection geometries. Opt. Express, 32, 1088(2024).
[89] S. R. Deans. The Radon Transform and Some of its Applications(2007).
[90] A. C. Kak, M. Slaney. Algorithms for reconstruction with nondiffracting sources. Principles of Computerized Tomographic Imaging, 49(2001).
[91] N. J. Redding, G. N. Newsam. Radon transform and its inverse. Inverting the Circular Radon Transform, 2(2002).
[92] N. J. Redding, T. M. Payne. Inverting the spherical Radon transform for 3D SAR image formation, 466(2003).
[93] K. E. Thomenius. Evolution of ultrasound beamformers, 1615(1996).
[94] J. C. Somer. Electronic sector scanning for ultrasonic diagnosis. Ultrasonics, 6, 153(1968).
[95] R. E. McKeighen, M. P. Buchin. New techniques for dynamically variable electronic delays for real time ultrasonic imaging, 250(1977).
[96] V. Perrot et al. So you think you can DAS? a viewpoint on delay-and-sum beamforming. Ultrasonics, 111, 106309(2021).
[97] C. G. A. Hoelen, F. F. de Mul. Image reconstruction for photoacoustic scanning of tissue structures. Appl. Opt., 39, 5872(2000).
[98] D. Feng et al. Microwave-induced thermoacoustic tomography: reconstruction by synthetic aperture. Med. Phys., 28, 2427(2001).
[99] H. B. Lim et al. Confocal microwave imaging for breast cancer detection: delay-multiply-and-sum image reconstruction algorithm. IEEE Trans. Biomed. Eng., 55, 1697(2008).
[100] G. Matrone et al. The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging. IEEE Trans. Med. Imaging, 34, 940(2015).
[101] A. Alshaya et al. Spatial resolution and contrast enhancement in photoacoustic imaging with filter delay multiply and sum beamforming technique, 1(2016).
[102] T. Kirchner et al. Signed real-time delay multiply and sum beamforming for multispectral photoacoustic imaging. J. Imaging, 4, 121(2018).
[103] S. Mulani, S. Paul, M. S. Singh. Higher-order correlation based real-time beamforming in photoacoustic imaging. J. Opt. Soc. Am. A, 39, 1805(2022).
[104] S. Jeon et al. Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans. Photoacoustics, 15, 100136(2019).
[105] S. Paul et al. Simplified delay multiply and sum based promising beamformer for real-time photoacoustic imaging. IEEE Trans. Instrum. Meas., 71, 1(2022).
[106] M. A. Lediju et al. Short-lag spatial coherence of backscattered echoes: Imaging characteristics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 1377(2011).
[107] M. A. Lediju Bell et al. In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging. J. Biomed. Opt., 19, 126011(2014).
[108] M. T. Graham, M. A. L. Bell. Theoretical application of short-lag spatial coherence to photoacoustic imaging, 1(2017).
[109] M. T. Graham, M. A. L. Bell. Photoacoustic spatial coherence theory and applications to coherence-based image contrast and resolution. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 2069(2020).
[110] J. Tordera Mora et al. Generalized spatial coherence reconstruction for photoacoustic computed tomography. J. Biomed. Opt., 26, 046002(2021).
[111] J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 57, 1408(1969).
[112] J. Mann, W. Walker. A constrained adaptive beamformer for medical ultrasound: Initial results, 1807(2002).
[113] M. Sasso, C. Cohen-Bacrie. Medical ultrasound imaging using the fully adaptive beamformer, ii/489(2005).
[114] J. F. Synnevag, A. Austeng, S. Holm. Adaptive beamforming applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54, 1606(2007).
[115] I. K. Holfort, F. Gran, J. A. Jensen. Broadband minimum variance beamforming for ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 314(2009).
[116] B. M. Asl, A. Mahloojifar. Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 1923(2009).
[117] S. Park et al. Adaptive beamforming for photoacoustic imaging. Opt. Lett., 33, 1291(2008).
[118] M. Mozaffarzadeh et al. Linear-array photoacoustic imaging using minimum variance-based delay multiply and sum adaptive beamforming algorithm. J. Biomed. Opt., 23, 026002(2018).
[119] M. Mozaffarzadeh et al. Eigenspace-based minimum variance combined with delay multiply and sum beamformer: application to linear-array photoacoustic imaging. IEEE J. Sel. Top. Quantum Electron, 25, 1(2018).
[120] R. Al Mukaddim, R. Ahmed, T. Varghese. Improving minimum variance beamforming with sub-aperture processing for photoacoustic imaging, 2879(2021).
[121] O. L. Frost. An algorithm for linearly constrained adaptive array processing. Proc. IEEE, 60, 926(1972).
[122] R. Mallart, M. Fink. Adaptive focusing in scattering media through sound-speed inhomogeneities: the van cittert zernike approach and focusing criterion. J. Acoust. Soc. Am., 96, 3721(1994).
[123] K. W. Hollman, K. Rigby, M. O’donnell. Coherence factor of speckle from a multi-row probe, 1257(1999).
[124] P.-C. Li, M.-L. Li. Adaptive imaging using the generalized coherence factor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 50, 128(2003).
[125] Y.-H. Wang, P.-C. Li. SNR-dependent coherence-based adaptive imaging for high-frame-rate ultrasonic and photoacoustic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61, 1419(2014).
[126] D. Wang et al. Coherent-weighted three-dimensional image reconstruction in linear-array-based photoacoustic tomography. Biomed. Opt. Express, 7, 1957(2016).
[127] M. Mozaffarzadeh et al. “Image improvement in linear-array photoacoustic imaging using high resolution coherence factor weighting technique. BMC Biomed. Eng., 1, 10(2019).
[128] S. Paul, S. Mandal, M. S. Singh. Noise adaptive beamforming for linear array photoacoustic imaging. IEEE Trans. Instrum. Meas., 70, 1(2021).
[129] R. A. Mukaddim, T. Varghese. Spatiotemporal coherence weighting for in vivo cardiac photoacoustic image beamformation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 68, 586(2021).
[130] M. Mozaffarzadeh et al. Enhanced linear-array photoacoustic beamforming using modified coherence factor. J. Biomed. Opt., 23, 026005(2018).
[131] S. Shamekhi et al. Eigenspace-based minimum variance beamformer combined with sign coherence factor: application to linear-array photoacoustic imaging. Ultrasonics, 108, 106174(2020).
[132] X. Ma et al. Multiple delay and sum with enveloping beamforming algorithm for photoacoustic imaging. IEEE Trans. Med. Imaging, 39, 1812(2020).
[133] Q. Mao et al. Improving photoacoustic imaging in low signal-to-noise ratio by using spatial and polarity coherence. Photoacoustics, 28, 100427(2022).
[134] M. Xu, L. V. Wang. Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration. Med. Phys., 29, 1661(2002).
[135] M. Xu, L. V. Wang. Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging, 21, 814(2002).
[136] M. Xu, Y. Xu, L. V. Wang. Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries. IEEE Trans. Biomed. Eng., 50, 1086(2003).
[137] K. Shen et al. Negativity artifacts in back-projection based photoacoustic tomography. J. Phys. D: Appl. Phys., 54, 074001(2020).
[138] R. Gao et al. Restoring the imaging quality of circular transducer array-based PACT using synthetic aperture focusing technique integrated with 2nd-derivative-based back projection scheme. Photoacoustics, 32, 100537(2023).
[139] L. A. Kunyansky. Explicit inversion formulae for the spherical mean Radon transform. Inverse Probl., 23, 373(2007).
[140] D. Finch, M. Haltmeier. Inversion of spherical means and the wave equation in even dimensions,”. SIAM J. Appl. Math., 68, 392(2007).
[141] L. V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Prob. Imaging, 3, 649(2009).
[142] P. Burgholzer et al. Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors. Inverse Probl., 23, S65(2007).
[143] F. Natterer. “Photo-acoustic inversion in convex domains. Inverse Prob. Imaging, 6, 1(2012).
[144] V. P. Palamodov. A uniform reconstruction formula in integral geometry. Inverse Probl., 28, 065014(2012).
[145] M. Haltmeier. Exact reconstruction formula for the spherical mean Radon transform on ellipsoids. Inverse Probl., 30, 105006(2014).
[146] M. Haltmeier. Universal inversion formulas for recovering a function from spherical means. SIAM J. Math. Anal., 46, 214(2014).
[147] Y. Salman. An inversion formula for the spherical mean transform with data on an ellipsoid in two and three dimensions. J. Math. Anal. Appl., 420, 612(2014).
[148] X. L. Deán-Ben, A. Ozbek, D. Razansky. Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging, 32, 2050(2013).
[149] J. Yuan et al. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization. J. Biomed. Opt., 18, 86001(2013).
[150] X. L. Deán-Ben, H. López-Schier, D. Razansky. Optoacoustic micro-tomography at 100 volumes per second. Sci. Rep., 7, 6850(2017).
[151] Y. Zhang, L. Wang. Video-rate ring-array ultrasound and photoacoustic tomography. IEEE Trans. Med. Imaging, 39, 4369(2020).
[152] Y. Wang, C. Li. Comprehensive framework of GPU-accelerated image reconstruction for photoacoustic computed tomography. J. Biomed. Opt., 29, 066006(2024).
[153] Y. Zhang et al. Video-rate dual-modal wide-beam harmonic ultrasound and photoacoustic computed tomography. IEEE Trans. Med. Imaging, 41, 727(2021).
[154] Z. Gao et al. Implementation and comparison of three image reconstruction algorithms in FPGA towards palm-size photoacoustic tomography. IEEE Sens. J., 23, 8605(2023).
[155] M. Xu, G. Ku, L. V. Wang. Microwave-induced thermoacoustic tomography using multi-sector scanning. Med. Phys., 28, 1958(2001).
[156] S. J. Norton. Reconstruction of a two-dimensional reflecting medium over a circular domain: exact solution. J. Acoust. Soc. Am., 67, 1266(1980).
[157] S. J. Norton, M. Linzer. Ultrasonic reflectivity imaging in three dimensions: exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans. Biomed. Eng., BME-28, 202(1981).
[158] Y. Xu, D. Feng, L. V. Wang. Exact frequency-domain reconstruction for thermoacoustic tomography. I. planar geometry. IEEE Trans. Med. Imaging, 21, 823(2002).
[159] M. Haltmeier, O. Scherzer, G. Zangerl. A reconstruction algorithm for photoacoustic imaging based on the nonuniform FFT. IEEE Trans. Med. Imaging, 28, 1727(2009).
[160] Y. Xu, M. Xu, L. V. Wang. Exact frequency-domain reconstruction for thermoacoustic tomography. II. cylindrical geometry. IEEE Trans. Med. Imaging, 21, 829(2002).
[161] M. Haltmeier et al. Thermoacoustic tomography and the circular Radon transform: exact inversion formula. Math. Models Methods Appl. Sci., 17, 635(2007).
[162] D. L. Colton, R. Kress, R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory, 93(1998).
[163] R. Suda, M. Takami. A fast spherical harmonics transform algorithm. Math. Comput., 71, 703(2002).
[164] M. A. Anastasio et al. Application of inverse source concepts to photoacoustic tomography. Inverse Probl., 23, S21(2007).
[165] K. Wang, M. A. Anastasio. A simple Fourier transform-based reconstruction formula for photoacoustic computed tomography with a circular or spherical measurement geometry. Phys. Med. Biol., 57, N493(2012).
[166] G. Beylkin. On representations of the Helmholtz Green’s function. Appl. Comput. Harmon. Anal., 70, 101633(2024).
[167] M. Agranovsky, P. Kuchment. Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Probl., 23, 2089(2007).
[168] G. Zangerl, O. Scherzer, M. Haltmeier. Circular integrating detectors in photo and thermoacoustic tomography. Inverse Probl. Sci. Eng., 17, 133(2009).
[169] G. Zangerl, O. Scherzer, M. Haltmeier. Exact series reconstruction in photoacoustic tomography with circular integrating detectors. Commun. Math. Sci., 7, 665(2008).
[170] B. E. Treeby, E. Z. Zhang, B. T. Cox. Photoacoustic tomography in absorbing acoustic media using time reversal. Inverse Probl., 26, 115003(2010).
[171] Y. Hristova, P. Kuchment, L. Nguyen. Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Probl., 24, 055006(2008).
[172] B. T. Cox, B. E. Treeby. Artifact trapping during time reversal photoacoustic imaging for acoustically heterogeneous media. IEEE Trans. Med. Imaging, 29, 387(2010).
[173] B. T. Cox et al. K-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics. J. Acoust. Soc. Am., 121, 3453(2007).
[174] P. Stefanov, G. Uhlmann. Thermoacoustic tomography with variable sound speed. Inverse Probl., 25, 075011(2009).
[175] J. Qian et al. An efficient neumann series–based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed. SIAM J. Imaging Sci., 4, 850(2011).
[176] S. R. Arridge et al. On the adjoint operator in photoacoustic tomography. Inverse Probl., 32, 115012(2016).
[177] A. Rosenthal, V. Ntziachristos, D. Razansky. Optoacoustic methods for frequency calibration of ultrasonic sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 316(2011).
[178] X. L. Dean-Ben et al. Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging, 31, 1922(2012).
[179] K. Wang et al. Investigation of iterative image reconstruction in optoacoustic tomography, 379(2012).
[180] J. Zhang et al. Effects of different imaging models on least-squares image reconstruction accuracy in photoacoustic tomography. IEEE Trans. Med. Imaging, 28, 1781(2009).
[181] K. Wang et al. Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography. Phys. Med. Biol., 57, 5399(2012).
[182] R. M. Lewitt. Multidimensional digital image representations using generalized kaiser–bessel window functions. J. Opt. Soc. Am. A, 7, 1834(1990).
[183] M. Schweiger, S. R. Arridge. Image reconstruction in optical tomography using local basis functions. J. Electron. Imaging, 12, 583(2003).
[184] G. B. Arfken, H. J. Weber, F. E. Harris. Mathematical Methods for Physicists: a Comprehensive Guide(2011).
[185] S. Matej, R. M. Lewitt. Practical considerations for 3-D image reconstruction using spherically symmetric volume elements. IEEE Trans. Med. Imaging, 15, 68(1996).
[186] C. B. Shaw et al. Least squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography. J. Biomed. Opt., 18, 080501(2013).
[187] P. R. Stepanishen. Transient radiation from pistons in an infinite planar baffle. J. Acoust. Soc. Am., 49, 1629(1971).
[188] J. C. Lockwood, J. G. Willette. High-speed method for computing the exact solution for the pressure variations in the nearfield of a baffled piston. J. Acoust. Soc. Am., 53, 735(1973).
[189] K. Mitsuhashi, K. Wang, M. A. Anastasio. Investigation of the far-field approximation for modeling a transducer’s spatial impulse response in photoacoustic computed tomography. Photoacoustics, 2, 21(2014).
[190] R. P. K. Jagannath, P. K. Yalavarthy. Minimal residual method provides optimal regularization parameter for diffuse optical tomography. J. Biomed. Opt., 17, 106015(2012).
[191] P. C. Hansen. The L-curve and its use in the numerical treatment of inverse problems. Computational Inverse Problems in Electrocardiology, 119(2001).
[192] D. Calvetti et al. Tikhonov regularization and the l-curve for large discrete ill-posed problems. J. Comput. Appl. Math., 123, 423(2000).
[193] L. Bottou. Large-scale machine learning with stochastic gradient descent, 177(2010).
[194] L. Bottou. Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade, 421(2012).
[195] C. C. Paige, M. A. Saunders. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software, 8, 43(1982).
[196] O. Axelsson. A generalized conjugate gradient, least square method. Numer. Math., 51, 209(1987).
[197] T. Wang et al. Learned regularization for image reconstruction in sparse-view photoacoustic tomography. Biomed. Opt. Express, 13, 5721(2022).
[198] J. Provost, F. Lesage. The application of compressed sensing for photo-acoustic tomography. IEEE Trans. Med. Imaging, 28, 585(2009).
[199] Z. Guo et al. Compressed sensing in photoacoustic tomography in vivo. J. Biomed. Opt., 15, 021311(2010).
[200] F. Lucka et al. Enhancing compressed sensing 4D photoacoustic tomography by simultaneous motion estimation. SIAM J. Imaging Sci., 11, 2224(2018).
[201] S. Biton et al. Optoacoustic model-based inversion using anisotropic adaptive total-variation regularization. Photoacoustics, 16, 100142(2019).
[202] A. Beck, M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2, 183(2009).
[203] I. Daubechies et al. Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math., 63, 1(2010).
[204] Y. Wang, W. Yin, J. Zeng. Global convergence of ADMM in nonconvex nonsmooth optimization. J. Sci. Comput., 78, 29(2019).
[205] X. Li et al. Model-based optoacoustic tomography image reconstruction with non-local and sparsity regularizations. IEEE Access, 7, 102136(2019).
[206] P. K. Yalavarthy et al. Non-local means improves total-variation constrained photoacoustic image reconstruction. J. Biophotonics, 14, e202000191(2021).
[207] J. Prakash et al. Maximum entropy based non-negative optoacoustic tomographic image reconstruction. IEEE Trans. Biomed. Eng., 66, 2604(2019).
[208] H. Liu et al. Curve-driven-based acoustic inversion for photoacoustic tomography. IEEE Trans. Med. Imaging, 35, 2546(2016).
[209] A. Javaherian, S. Holman. A multi-grid iterative method for photoacoustic tomography. IEEE Trans. Med. Imaging, 36, 696(2016).
[210] X. L. Dean-Ben, V. Ntziachristos, D. Razansky. Acceleration of optoacoustic model-based reconstruction using angular image discretization. IEEE Trans. Med. Imaging, 31, 1154(2012).
[211] A. Buehler et al. Model-based optoacoustic inversions with incomplete projection data. Med. Phys., 38, 1694(2011).
[212] A. Voulodimos et al. Deep learning for computer vision: a brief review. Comput. Intell. Neurosci., 2018, 7068349(2018).
[213] D. W. Otter, J. R. Medina, J. K. Kalita. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst., 32, 604(2021).
[214] S. S. Nisha, N. Meeral. Applications of deep learning in biomedical engineering. Handbook of Deep Learning in Biomedical Engineering Techniques and Applications, 245(2020).
[215] G. Wang, J. C. Ye, B. De Man. Deep learning for tomographic image reconstruction. Nat. Mach. Intell., 2, 737(2020).
[216] G. Wang. A perspective on deep imaging. IEEE Access, 4, 8914(2016).
[217] G. Wang et al. Deep tomographic image reconstruction: yesterday, today, and tomorrow—editorial for the 2nd special issue ‘Machine Learning for Image Reconstruction’. IEEE Trans. Med. Imaging, 40, 2956(2021).
[218] D. Liang et al. Deep magnetic resonance image reconstruction: inverse problems meet neural networks. IEEE Signal Process Mag., 37, 141(2020).
[219] E. M. A. Anas et al. Enabling fast and high quality LED photoacoustic imaging: a recurrent neural networks based approach. Biomed. Opt. Express, 9, 3852(2018).
[220] A. Hariri et al. Deep learning improves contrast in low-fluence photoacoustic imaging. Biomed. Opt. Express, 11, 3360(2020).
[221] M. Yamakawa, T. Shiina. Artifact reduction in photoacoustic images by generating virtual dense array sensor from hemispheric sparse array sensor using deep learning. J. Med. Ultrason., 51, 169(2024).
[222] J. Zhang et al. PAFormer: photoacoustic reconstruction via transformer with mask mechanism (IUS), 1(2022).
[223] F. Zhang et al. Photoacoustic digital brain and deep-learning-assisted image reconstruction. Photoacoustics, 31, 100517(2023).
[224] P. Farnia et al. High-quality photoacoustic image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging. Biomed. Phys. Eng. Express, 6, 045019(2020).
[225] S. Guan et al. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal. IEEE J. Biomed. Health. Inf., 24, 568(2020).
[226] J. Zhang et al. Limited-view photoacoustic imaging reconstruction with dual domain inputs under mutual information constraint(2020).
[227] S. Guan et al. Dense dilated UNet: deep learning for 3D photoacoustic tomography image reconstruction(2021).
[228] A. Creswell et al. Generative adversarial networks: an overview. IEEE Signal Process Mag., 35, 53(2018).
[229] T. Vu et al. A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer. Commun. Pure Appl. Math., 245, 597(2020).
[230] H. Shahid et al. Feasibility of a generative adversarial network for artifact removal in experimental photoacoustic imaging. Ultrasound Med. Biol., 48, 1628(2022).
[231] M. Lu et al. Artifact removal in photoacoustic tomography with an unsupervised method. Biomed. Opt. Express, 12, 6284(2021).
[232] H. Shan, G. Wang, Y. Yang. Accelerated correction of reflection artifacts by deep neural networks in photoacoustic tomography. Appl. Sci., 9, 2615(2019).
[233] S. Jeon et al. A deep learning-based model that reduces speed of sound aberrations for improved in vivo photoacoustic imaging. IEEE Trans. Image Process., 30, 8773(2021).
[234] Y. Gao et al. Deep learning-based photoacoustic imaging of vascular network through thick porous media. IEEE Trans. Med. Imaging, 41, 2191(2022).
[235] V. Shijo et al. SwinIR for photoacoustic computed tomography artifact reduction, 1(2023).
[236] W. Zheng et al. Deep-E enhanced photoacoustic tomography using three-dimensional reconstruction for high-quality vascular imaging. Sensors, 22, 7725(2022).
[237] C. Cai et al. End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging. Opt. Lett., 43, 2752(2018).
[238] I. Olefir et al. Deep learning-based spectral unmixing for optoacoustic imaging of tissue oxygen saturation. IEEE Trans. Med. Imaging, 39, 3643(2020).
[239] C. Bench, A. Hauptmann, B. T. Cox. Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions. J. Biomed. Opt., 25, 085003(2020).
[240] C. Yang, F. Gao. EDA-Net: dense aggregation of deep and shallow information achieves quantitative photoacoustic blood oxygenation imaging deep in human breast, 246(2019).
[241] C. Yang et al. Quantitative photoacoustic blood oxygenation imaging using deep residual and recurrent neural network, 741(2019).
[242] Z. Wang et al. Extractor-attention-predictor network for quantitative photoacoustic tomography. Photoacoustics, 38, 100609(2024).
[243] N. Awasthi et al. PA-fuse: a deep supervised approach for fusion of photoacoustic images with distinct reconstruction characteristics. Biomed. Opt. Express, 10, 2227(2019).
[244] J. Zhang et al. Photoacoustic image classification and segmentation of breast cancer: a feasibility study. IEEE Access, 7, 5457(2019).
[245] N.-K. Chlis et al. A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography. Photoacoustics, 20, 100203(2020).
[246] B. Lafci et al. Deep learning for automatic segmentation of hybrid optoacoustic ultrasound (OPUS) images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 68, 688(2021).
[247] M. G. González, M. Vera, L. J. R. Vega. Combining band-frequency separation and deep neural networks for optoacoustic imaging. Opt. Lasers Eng., 163, 107471(2023).
[248] H. Shahid et al. A deep learning approach for the photoacoustic tomography recovery from undersampled measurements. Front. Neurosci., 15, 598693(2021).
[249] G. Godefroy, B. Arnal, E. Bossy. Compensating for visibility artefacts in photoacoustic imaging with a deep learning approach providing prediction uncertainties. Photoacoustics, 21, 100218(2021).
[250] H. Zhang et al. A new deep learning network for mitigating limited-view and under-sampling artifacts in ring-shaped photoacoustic tomography. Comput. Med. Imaging Graph., 84, 101720(2020).
[251] P. Rajendran, M. Pramanik. High frame rate (approximately 3 Hz) circular photoacoustic tomography using single-element ultrasound transducer aided with deep learning. J. Biomed. Opt., 27, 066005(2022).
[252] P. Rajendran, M. Pramanik. Deep-learning-based multi-transducer photoacoustic tomography imaging without radius calibration. Opt. Lett., 46, 4510(2021).
[253] H. Lan et al. Ki-GAN: knowledge infusion generative adversarial network for photoacoustic image reconstruction in vivo, 273(2019).
[254] H. Lan et al. Y-Net: hybrid deep learning image reconstruction for photoacoustic tomography in vivo. Photoacoustics, 20, 100197(2020).
[255] N. Davoudi et al. Deep learning of image and time-domain data enhances the visibility of structures in optoacoustic tomography. Opt. Lett., 46, 3029(2021).
[256] M. Guo et al. AS-Net: fast photoacoustic reconstruction with multi-feature fusion from sparse data. IEEE Trans. Comput. Imaging, 8, 215(2022).
[257] W. Li et al. Deep learning reconstruction algorithm based on sparse photoacoustic tomography system, 1(2021).
[258] H. Lan, C. Yang, F. Gao. A jointed feature fusion framework for photoacoustic image reconstruction. Photoacoustics, 29, 100442(2023).
[259] H. Li et al. NETT: solving inverse problems with deep neural networks. Inverse Probl., 36, 065005(2020).
[260] S. Antholzer et al. NETT regularization for compressed sensing photoacoustic tomography, 272(2019).
[261] C. Yang, H. Lan, F. Gao. Accelerated photoacoustic tomography reconstruction via recurrent inference machines, 6371(2019).
[262] H. Lan et al. Compressed sensing for photoacoustic computed tomography based on an untrained neural network with a shape prior. Biomed. Opt. Express, 12, 7835(2021).
[263] H. Lan, J. Gong, F. Gao. Deep learning adapted acceleration for limited-view photoacoustic image reconstruction. Opt. Lett., 47, 1911(2022).
[264] H. Shan, G. Wang, Y. Yang. Simultaneous reconstruction of the initial pressure and sound speed in photoacoustic tomography using a deep-learning approach. Proc. SPIE, 11105, 1110504(2019).
[265] Y. E. Boink, S. Manohar, C. Brune. A partially-learned algorithm for joint photo-acoustic reconstruction and segmentation. IEEE Trans. Med. Imaging, 39, 129(2020).
[266] J. Ho, A. Jain, P. Abbeel. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst., 33, 6840(2020).
[267] Z. Luo et al. Image restoration with mean-reverting stochastic differential equations(2023).
[268] K. Guo et al. Score-based generative model-assisted information compensation for high-quality limited-view reconstruction in photoacoustic tomography. Photoacoustics, 38, 100623(2024).
[269] S. Tong et al. Score-based generative models for photoacoustic image reconstruction with rotation consistency constraints(2023).
[270] S. Dey et al. Score-based diffusion models for photoacoustic tomography image reconstruction, 2470(2024).
[271] X. Song et al. Sparse-view reconstruction for photoacoustic tomography combining diffusion model with model-based iteration. Photoacoustics, 33, 100558(2023).
[272] D. Waibel et al. Reconstruction of initial pressure from limited view photoacoustic images using deep learning, 196(2018).
[273] H. Lan et al. Reconstruct the photoacoustic image based on deep learning with multi-frequency ring-shape transducer array, 7115(2019).
[274] J. Feng et al. End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging. Biomed. Opt. Express, 11, 5321(2020).
[275] H. Lan et al. Deep learning enabled real-time photoacoustic tomography system via single data acquisition channel. Photoacoustics, 22, 100270(2021).
[276] K. Shen et al. Physics-driven deep learning photoacoustic tomography. Fundam. Res.(2024).
[277] H. Lan et al. Masked cross-domain self-supervised deep learning framework for photoacoustic computed tomography reconstruction. Neural Netw., 179, 106515(2024).
[278] S. Guan et al. Limited-view and sparse photoacoustic tomography for neuroimaging with deep learning. Sci. Rep., 10, 8510(2020).
[279] M. Kim et al. Deep-learning image reconstruction for real-time photoacoustic system. IEEE Trans. Med. Imaging, 39, 3379(2020).
[280] T. Tong et al. Domain transform network for photoacoustic tomography from limited-view and sparsely sampled data. Photoacoustics, 19, 100190(2020).
[281] C. Dehner et al. DeepMB: deep neural network for real-time model-based optoacoustic image reconstruction with adjustable speed of sound(2022).
[282] C. Dehner et al. Deep model-based optoacoustic image reconstruction (DeepMB), 66(2024).
[283] D. Allman, A. Reiter, M. A. L. Bell. Photoacoustic source detection and reflection artifact removal enabled by deep learning. IEEE Trans. Med. Imaging, 37, 1464(2018).
[284] X. Luo et al. Fast correction of “finite aperture effect” in photoacoustic tomography based on spatial impulse response. Photonics, 8, 356(2021).
[285] B. Wang et al. Approximate back-projection method for improving lateral resolution in circular-scanning-based photoacoustic tomography. Med. Phys., 48, 3011(2021).
[286] M.-L. Li, Y.-C. Tseng, C.-C. Cheng. Model-based correction of finite aperture effect in photoacoustic tomography. Opt. Express, 18, 26285(2010).
[287] V. G. Andreev et al. Detection of optoacoustic transients with a rectangular transducer of finite dimensions, 153(2002).
[288] S. A. Ermilov et al. Development of laser optoacoustic and ultrasonic imaging system for breast cancer utilizing handheld array probes, 28(2009).
[289] K. B. Chowdhury et al. A synthetic total impulse response characterization method for correction of hand-held optoacoustic images. IEEE Trans. Med. Imaging, 39, 3218(2020).
[290] L. Qi et al. Photoacoustic tomography image restoration with measured spatially variant point spread functions. IEEE Trans. Med. Imaging, 40, 2318(2021).
[291] D. Xie et al. Spatially-variant image deconvolution for photoacoustic tomography. Opt. Express, 31, 21641(2023).
[292] W. Dong et al. Image restoration for ring-array photoacoustic tomography system based on blind spatially rotational deconvolution. Photoacoustics, 38, 100607(2024).
[293] K. T. Hsu, S. Guan, P. V. Chitnis. Comparing deep learning frameworks for photoacoustic tomography image reconstruction. Photoacoustics, 23, 100271(2021).
[294] T. Wang et al. Sparse-view photoacoustic image quality enhancement based on a modified U-Net. Laser Optoelectron. Prog., 59, 0617022(2022).
[295] T. Wang et al. Streak artifact suppressed back projection for sparse-view photoacoustic computed tomography. Appl. Opt., 62, 3917(2023).
[296] Y. Zhao et al. Ultrasound-guided adaptive photoacoustic tomography. Opt. Lett., 47, 3960(2022).
[297] M. Sandbichler et al. A novel compressed sensing scheme for photoacoustic tomography. SIAM J. Appl. Math., 75, 2475(2015).
[298] J. Meng et al. High-speed, sparse-sampling three-dimensional photoacoustic computed tomography in vivo based on principal component analysis. J. Biomed. Opt., 21, 076007(2016).
[299] P. Hu et al. Spatiotemporal antialiasing in photoacoustic computed tomography. IEEE Trans. Med. Imaging, 39, 3535(2020).
[300] P. Hu, L. Li, L. V. Wang. Location-dependent spatiotemporal antialiasing in photoacoustic computed tomography. IEEE Trans. Med. Imaging, 42, 1210(2022).
[301] C. Cai et al. Streak artifact suppression in photoacoustic computed tomography using adaptive back projection. Biomed. Opt. Express, 10, 4803(2019).
[302] S. Hakakzadeh et al. A spatial-domain factor for sparse-sampling circular-view photoacoustic tomography. IEEE J. Sel. Top. Quantum Electron., 29, 1(2022).
[303] Y. Wang et al. Enhancing sparse-view photoacoustic tomography with combined virtually parallel projecting and spatially adaptive filtering. Biomed. Opt. Express, 9, 4569(2018).
[304] S. K. Patch. Thermoacoustic tomography-consistency conditions and the partial scan problem. Phys. Med. Biol., 49, 2305(2004).
[305] J. K. Gamelin, A. Aguirre, Q. Zhu. Fast, limited-data photoacoustic imaging for multiplexed systems using a frequency-domain estimation technique. Med. Phys., 38, 1503(2011).
[306] G. Paltauf, R. Nuster, P. Burgholzer. Weight factors for limited angle photoacoustic tomography. Phys. Med. Biol., 54, 3303(2009).
[307] T. Wang, W. Liu, C. Tian. Combating acoustic heterogeneity in photoacoustic computed tomography: a review. J. Innov. Opt. Health Sci., 13, 2030007(2020).
[308] Y. Zhang, L. Wang. Adaptive dual-speed ultrasound and photoacoustic computed tomography. Photoacoustics, 27, 100380(2022).
[309] C. Cai et al. Feature coupling photoacoustic computed tomography for joint reconstruction of initial pressure and sound speed in vivo. Biomed. Opt. Express, 10, 3447(2019).
[310] J. Wei, K. Shen, C. Tian. Comparisons of filtered back-projection and time reversal algorithms in photoacoustic tomography, 68(2023).
[311] S. Liu et al. Ultrafast Filtered Back-Projection for Photoacoustic Computed Tomography(2024).
[312] D. Van de Sompel et al. Comparison of deconvolution filters for photoacoustic tomography. PLoS One, 11, e0152597(2016).
[313] K. Shen et al. Dual-domain neural network for sparse-view photoacoustic image reconstruction. Chin. J. Lasers, 49, 0507208(2022).
[314] M. A. Anastasio et al. Half-time image reconstruction in thermoacoustic tomography. IEEE Trans. Med. Imaging, 24, 199(2005).
[315] J. Poudel et al. Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method. J. Biomed. Opt., 22, 041018(2017).
[316] B. E. Treeby et al. Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach. J. Biomed. Opt., 16, 090501(2011).
[317] T. P. Matthews et al. Parameterized joint reconstruction of the initial pressure and sound speed distributions for photoacoustic computed tomography. SIAM J. Imaging Sci., 11, 1560(2018).
[318] J. Xia et al. Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array. Opt. Lett., 38, 3140(2013).
[319] E. Merčep et al. Transmission–reflection optoacoustic ultrasound (TROPUS) computed tomography of small animals. Light Sci. Appl., 8, 1(2019).
[320] Z. Hu et al. Sound speed imaging of small animal organs by ultrasound computed tomography. JUSTC, 52, 8(2022).
[321] J. Li et al. Deep learning-based quantitative optoacoustic tomography of deep tissues in the absence of labeled experimental data. Optica, 9, 32(2022).
[322] B. He et al. From signal to knowledge: the diagnostic value of rawdata in artificial intelligence prediction of human data for the first time. Engineering, 34, 60(2022).
[323] W. Fu et al. Ultracompact meta-imagers for arbitrary all-optical convolution. Light Sci. Appl., 11, 62(2022).
[324] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).
[325] Q. Jiang, G. Jin, L. Cao. When metasurface meets hologram: principle and advances. Adv. Opt. Photonics, 11, 518(2019).
[326] S. Sun et al. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics, 11, 380(2019).
[327] Y. Zhao et al. Ultraviolet metalens for photoacoustic microscopy with an elongated depth of focus. Opt. Lett., 48, 3435(2023).
[328] W. Song et al. Ultraviolet metasurface-assisted photoacoustic microscopy with great enhancement in DOF for fast histology imaging. Photoacoustics, 32, 100525(2023).
[329] A. Barulin et al. Dual-wavelength UV-visible metalens for multispectral photoacoustic microscopy: a simulation study. Photoacoustics, 32, 100545(2023).
[330] C. Tian et al. Non-contact photoacoustic imaging using a commercial heterodyne interferometer. IEEE Sens. J., 16, 2079(2016).
[331] B. Dong, C. Sun, H. F. Zhang. Optical detection of ultrasound in photoacoustic imaging. IEEE Trans. Biomed. Eng., 64, 4(2016).
[332] G. Wissmeyer et al. Looking at sound: optoacoustics with all-optical ultrasound detection. Light Sci. Appl., 7, 53(2018).
[333] V. V. Yakovlev et al. Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials. Adv. Mater., 25, 2351(2013).
[334] J. Weber, P. C. Beard, S. E. Bohndiek. Contrast agents for molecular photoacoustic imaging. Nat. Methods, 13, 639(2016).
[335] W. Li, X. Chen. Gold nanoparticles for photoacoustic imaging. Nanomed., 10, 299(2015).
[336] T.-H. Shin et al. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem. Soc. Rev., 44, 4501(2015).
[337] Y. Mantri, J. V. Jokerst. Engineering plasmonic nanoparticles for enhanced photoacoustic imaging. ACS Nano, 14, 9408(2020).
[338] C. Tian et al. Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells. Adv. Sci., 3, 1600237(2016).
[339] V. P. Nguyen et al. Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging. Nat. Commun., 12, 34(2021).
[340] K. Pu et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol., 9, 233(2014).
[341] S. Y. Ong et al. Recent advances in polymeric nanoparticles for enhanced fluorescence and photoacoustic imaging. Angew. Chem. Int. Ed., 60, 17797(2021).