• Photonics Insights
  • Vol. 3, Issue 3, R06 (2024)
Chao Tian1,2,3,4, Kang Shen2, Wende Dong5, Fei Gao6,7..., Kun Wang8, Jiao Li9, Songde Liu2,3, Ting Feng10, Chengbo Liu11, Changhui Li12,13, Meng Yang14,*, Sheng Wang3,* and Jie Tian8,15,16,*|Show fewer author(s)
Author Affiliations
  • 1Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
  • 2School of Engineering Science, University of Science and Technology of China, Hefei, China
  • 3Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
  • 4Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Hefei, China
  • 5College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
  • 6School of Information Science and Technology, ShanghaiTech University, Shanghai, China
  • 7Shanghai Clinical Research and Trial Center, Shanghai, China
  • 8CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
  • 9School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
  • 10Academy for Engineering and Technology, Fudan University, Shanghai, China
  • 11Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
  • 12Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
  • 13National Biomedical Imaging Center, Peking University, Beijing, China
  • 14Departments of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
  • 15School of Engineering Medicine, Beihang University, Beijing, China
  • 16Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
  • show less
    DOI: 10.3788/PI.2024.R06 Cite this Article Set citation alerts
    Chao Tian, Kang Shen, Wende Dong, Fei Gao, Kun Wang, Jiao Li, Songde Liu, Ting Feng, Chengbo Liu, Changhui Li, Meng Yang, Sheng Wang, Jie Tian, "Image reconstruction from photoacoustic projections," Photon. Insights 3, R06 (2024) Copy Citation Text show less
    References

    [1] A. G. Bell. On the production and reproduction of sound by light. Am. J. Sci., s3-20, 305(1880).

    [2] L. V. Wang. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics, 3, 503(2009).

    [3] L. V. Wang, S. Hu. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 335, 1458(2012).

    [4] C. Tian et al. Spatial resolution in photoacoustic computed tomography. Rep. Prog. Phys., 84, 036701(2021).

    [5] C. Li, L. V. Wang. Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol., 54, R59(2009).

    [6] S.-L. Chen, C. Tian. Recent developments in photoacoustic imaging and sensing for nondestructive testing and evaluation. Vis. Comput. Ind. Biomed. Art., 4, 1(2021).

    [7] C. Tian et al. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography. Opt. Express, 25, 15947(2017).

    [8] S. Li et al. Photoacoustic imaging of peripheral vessels in extremities by large-scale synthetic matrix array. J. Biomed. Opt., 29, S11519(2024).

    [9] S. Liu et al. Validation of photoacoustic/ultrasound dual imaging in evaluating blood oxygen saturation. Biomed. Opt. Express, 13, 5551(2022).

    [10] M. Yang et al. Synovial oxygenation at photoacoustic imaging to assess rheumatoid arthritis disease activity. Radiology, 306, 220(2023).

    [11] S. Liu et al. On the imaging depth limit of photoacoustic tomography in the visible and first near-infrared windows. Opt. Express, 32, 5460(2024).

    [12] S. Liu et al. In vivo photoacoustic sentinel lymph node imaging using clinically-approved carbon nanoparticles. IEEE Trans. Biomed. Eng., 67, 2033(2019).

    [13] W. Pang et al. Direct monitoring of whole-brain electrodynamics via high-spatiotemporal-resolution photoacoustics with voltage-sensitive dye. Laser Photonics Rev., 2400165(2024).

    [14] T. Bowen. Radiation-induced thermoacoustic soft tissue imaging, 817(1981).

    [15] T. Bowen et al. Some experimental results on the thermoacoustic imaging of tissue equivalent phantom materials, 823(1981).

    [16] T. Bowen. Radiation-induced thermoacoustic imaging. U.S. patent(1981).

    [17] A. A. Oraevsky, S. L. Jacques, F. K. Tittel. Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves, 86(1993).

    [18] A. A. Oraevsky et al. Laser-based optoacoustic imaging in biological tissues, 122(1994).

    [19] A. A. Oraevsky et al. Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers, 198(1995).

    [20] R. A. Kruger. Photoacoustic ultrasound. Med. Phys., 21, 127(1994).

    [21] R. A. Kruger, P. Liu. Photoacoustic ultrasound: pulse production and detection in 0.5% liposyn. Med. Phys., 21, 1179(1994).

    [22] R. A. Kruger et al. Photoacoustic ultrasound (PAUS) reconstruction tomography. Med. Phys., 22, 1605(1995).

    [23] D. Finch, S. K. Patch, R. Rakesh. “Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal., 35, 1213(2004).

    [24] M. Xu, L. V. Wang. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E, 71, 016706(2005).

    [25] C. G. A. Hoelen et al. Three-dimensional photoacoustic imaging of blood vessels in tissue. Opt. Lett., 23, 648(1998).

    [26] C. G. A. Hoelen et al. Photoacoustic blood cell detection and imaging of blood vessels in phantom tissue, 142(1998).

    [27] M. Mozaffarzadeh et al. Double-stage delay multiply and sum beamforming algorithm: application to linear-array photoacoustic imaging. IEEE Trans. Biomed. Eng., 65, 31(2018).

    [28] M. A. Lediju Bell et al. Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds. Biomed. Opt. Express, 4, 1964(2013).

    [29] C.-K. Liao, M.-L. Li, P.-C. Li. Optoacoustic imaging with synthetic aperture focusing and coherence weighting. Opt. Lett., 29, 2506(2004).

    [30] S. Paul, A. Thomas, M. S. Singh. Delay-and-sum-to-delay-standard-deviation factor: a promising adaptive beamformer. Opt. Lett., 46, 4662(2021).

    [31] K. P. Köstli et al. Temporal backward projection of optoacoustic pressure transients using Fourier transform methods. Phys. Med. Biol., 46, 1863(2001).

    [32] L. A. Kunyansky. A series solution and a fast algorithm for the inversion of the spherical mean Radon transform. Inverse Probl., 23, S11(2007).

    [33] L. Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Prob. Imaging, 6, 111(2012).

    [34] Y. Xu, L. V. Wang. Time reversal and its application to tomography with diffracting sources. Phys. Rev. Lett., 92, 033902(2004).

    [35] P. Burgholzer et al. Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface. Phys. Rev. E, 75, 046706(2007).

    [36] G. Paltauf et al. Iterative reconstruction algorithm for optoacoustic imaging. J. Acoust. Soc. Am., 112, 1536(2002).

    [37] A. Rosenthal, D. Razansky, V. Ntziachristos. Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography. IEEE Trans. Med. Imaging, 29, 1275(2010).

    [38] K. Wang et al. Discrete imaging models for three-dimensional optoacoustic tomography using radially symmetric expansion functions. IEEE Trans. Med. Imaging, 33, 1180(2014).

    [39] K. Wang et al. An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging, 30, 203(2011).

    [40] L. Ding, X. L. Deán-Ben, D. Razansky. Efficient 3-D model-based reconstruction scheme for arbitrary optoacoustic acquisition geometries. IEEE Trans. Med. Imaging, 36, 1858(2017).

    [41] C. Huang et al. Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media. IEEE Trans. Med. Imaging, 32, 1097(2013).

    [42] K. Wang et al. Accelerating image reconstruction in three-dimensional optoacoustic tomography on graphics processing units. Med. Phys., 40, 023301(2013).

    [43] L. Ding, X. L. Deán-Ben, D. Razansky. Real-time model-based inversion in cross-sectional optoacoustic tomography. IEEE Trans. Med. Imaging, 35, 1883(2016).

    [44] S. Antholzer, M. Haltmeier, J. Schwab. Deep learning for photoacoustic tomography from sparse data. Inverse Probl. Sci. Eng., 27, 987(2019).

    [45] A. Hauptmann et al. Model-based learning for accelerated, limited-view 3-D photoacoustic tomography. IEEE Trans. Med. Imaging, 37, 1382(2018).

    [46] N. Davoudi, X. L. Deán-Ben, D. Razansky. Deep learning optoacoustic tomography with sparse data. Nat. Mach. Intell., 1, 453(2019).

    [47] S. Choi et al. Deep learning enhances multiparametric dynamic volumetric photoacoustic computed tomography in vivo (DL-PACT). Adv. Sci., 10, e2202089(2022).

    [48] A. Hauptmann, B. Cox. Deep learning in photoacoustic tomography: current approaches and future directions. J. Biomed. Opt., 25, 112903(2020).

    [49] H. Deng et al. Deep learning in photoacoustic imaging: a review. J. Biomed. Opt., 26, 040901(2021).

    [50] P. Rajendran, A. Sharma, M. Pramanik. Photoacoustic imaging aided with deep learning: a review. Biomed. Eng. Lett., 12, 155(2022).

    [51] S. Gutta et al. Deep neural network-based bandwidth enhancement of photoacoustic data. J. Biomed. Opt., 22, 1(2017).

    [52] N. Awasthi et al. Deep neural network-based sinogram super-resolution and bandwidth enhancement for limited-data photoacoustic tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 2660(2020).

    [53] P. Rajendran, M. Pramanik. Deep learning approach to improve tangential resolution in photoacoustic tomography. Biomed. Opt. Express, 11, 7311(2020).

    [54] H. Zhang et al. Deep-E: a fully-dense neural network for improving the elevation resolution in linear-array-based photoacoustic tomography. IEEE Trans. Med. Imaging, 41, 1279(2021).

    [55] C. Dehner et al. Deep-learning-based electrical noise removal enables high spectral optoacoustic contrast in deep tissue. IEEE Trans. Med. Imaging, 41, 3182(2022).

    [56] H. Zhao et al. Deep learning enables superior photoacoustic imaging at ultralow laser dosages. Adv. Sci., 8, 2003097(2021).

    [57] K. T. Hsu, S. Guan, P. V. Chitnis. Fast iterative reconstruction for photoacoustic tomography using learned physical model: Theoretical validation. Photoacoustics, 29, 100452(2023).

    [58] T. Lu et al. LV-GAN: a deep learning approach for limited-view optoacoustic imaging based on hybrid datasets. J. Biophotonics, 14, e202000325(2021).

    [59] X. Zhang et al. Sparse-sampling photoacoustic computed tomography: deep learning vs. compressed sensing. Biomed. Signal Process. Control, 71, 103233(2022).

    [60] P. Kuchment, L. Kunyansky. Mathematics of thermoacoustic tomography. Eur. J. Appl. Math., 19, 191(2008).

    [61] A. Rosenthal, V. Ntziachristos, D. Razansky. Acoustic inversion in optoacoustic tomography: a review. Curr. Med. Imaging Rev., 9, 318(2013).

    [62] C. Lutzweiler, D. Razansky. Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification. Sensors, 13, 7345(2013).

    [63] J. Poudel, Y. Lou, M. A. Anastasio. A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography. Phys. Med. Biol., 64, 14TR01(2019).

    [64] X. L. Deán-Ben, D. Razansky. A practical guide for model-based reconstruction in optoacoustic imaging. Front. Phys., 10, 1057(2022).

    [65] C. Yang et al. Review of deep learning for photoacoustic imaging. Photoacoustics, 21, 100215(2021).

    [66] H. B. Yedder, B. Cardoen, G. Hamarneh. Deep learning for biomedical image reconstruction: a survey. Artif. Intell. Rev., 54, 215(2021).

    [67] A. DiSpirito et al. Sounding out the hidden data: a concise review of deep learning in photoacoustic imaging. Exp. Biol. Med., 246, 1355(2021).

    [68] J. Gröhl et al. Deep learning for biomedical photoacoustic imaging: a review. Photoacoustics, 22, 100241(2021).

    [69] B. Cox et al. Quantitative spectroscopic photoacoustic imaging: a review. J. Biomed. Opt., 17, 061202(2012).

    [70] X. Tang, J. Fu, H. Qin. Microwave-induced thermoacoustic imaging with functional nanoparticles. J. Innov. Opt. Health Sci., 16, 2230014(2023).

    [71] Q. Liu et al. Biomedical microwave-induced thermoacoustic imaging. J. Innov. Opt. Health Sci., 15, 2230007(2022).

    [72] Z. Liang et al. Study on response of metal wire in thermoacoustic imaging. J. Innov. Opt. Health Sci., 15, 2250015(2022).

    [73] X. Liang et al. Investigation of artifacts by mapping SAR in thermoacoustic imaging. J. Innov. Opt. Health Sci., 14, 2150011(2021).

    [74] L. V. Wang, H. Wu. Biomedical Optics: Principles and Imaging(2007).

    [75] B. T. Cox, P. C. Beard. Fast calculation of pulsed photoacoustic fields in fluids using k-space methods. J. Acoust. Soc. Am., 117, 3616(2005).

    [76] American National. American National Standard for Safe Use of Lasers ANSI Z136.1-2007(2007).

    [77] A. C. Tam. Applications of photoacoustic sensing techniques. Rev. Mod. Phys., 58, 381(1986).

    [78] B. Cox, P. C. Beard. Modeling photoacoustic propagation in tissue using k-space techniques. Photoacoustic Imaging and Spectroscopy, 25(2017).

    [79] H. Jiang. Fundamentals of photoacoustic tomography. Photoacoustic Tomography, 1(2015).

    [80] L. V. Wang. Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Top. Quantum Electron., 14, 171(2008).

    [81] C. Guo, C. S. Singh. Handbook of Laser Technology and Applications: Laser Applications: Medical, Metrology and Communication (volume four)(2021).

    [82] C. Tian et al. Impact of system factors on the performance of photoacoustic tomography scanners. Phys. Rev. Appl., 13, 014001(2020).

    [83] B. E. Treeby, B. T. Cox. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt., 15, 021314(2010).

    [84] B. E. Treeby et al. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. J. Acoust. Soc. Am., 131, 4324(2012).

    [85] N. N. Bojarski. The k-space formulation of the scattering problem in the time domain. J. Acoust. Soc. Am., 72, 570(1982).

    [86] M. Tabei, T. D. Mast, R. C. Waag. A k-space method for coupled first-order acoustic propagation equations. J. Acoust. Soc. Am., 111, 53(2002).

    [87] Z. Chenxi, T. Zhijian, T. Chao. Point spread function modeling for photoacoustic tomography–I: three-dimensional detection geometries. Opt. Express, 32, 1063(2024).

    [88] C. Zhang, C. Chen, C. Tian. Point spread function modeling for photoacoustic tomography–II: Two-dimensional detection geometries. Opt. Express, 32, 1088(2024).

    [89] S. R. Deans. The Radon Transform and Some of its Applications(2007).

    [90] A. C. Kak, M. Slaney. Algorithms for reconstruction with nondiffracting sources. Principles of Computerized Tomographic Imaging, 49(2001).

    [91] N. J. Redding, G. N. Newsam. Radon transform and its inverse. Inverting the Circular Radon Transform, 2(2002).

    [92] N. J. Redding, T. M. Payne. Inverting the spherical Radon transform for 3D SAR image formation, 466(2003).

    [93] K. E. Thomenius. Evolution of ultrasound beamformers, 1615(1996).

    [94] J. C. Somer. Electronic sector scanning for ultrasonic diagnosis. Ultrasonics, 6, 153(1968).

    [95] R. E. McKeighen, M. P. Buchin. New techniques for dynamically variable electronic delays for real time ultrasonic imaging, 250(1977).

    [96] V. Perrot et al. So you think you can DAS? a viewpoint on delay-and-sum beamforming. Ultrasonics, 111, 106309(2021).

    [97] C. G. A. Hoelen, F. F. de Mul. Image reconstruction for photoacoustic scanning of tissue structures. Appl. Opt., 39, 5872(2000).

    [98] D. Feng et al. Microwave-induced thermoacoustic tomography: reconstruction by synthetic aperture. Med. Phys., 28, 2427(2001).

    [99] H. B. Lim et al. Confocal microwave imaging for breast cancer detection: delay-multiply-and-sum image reconstruction algorithm. IEEE Trans. Biomed. Eng., 55, 1697(2008).

    [100] G. Matrone et al. The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging. IEEE Trans. Med. Imaging, 34, 940(2015).

    [101] A. Alshaya et al. Spatial resolution and contrast enhancement in photoacoustic imaging with filter delay multiply and sum beamforming technique, 1(2016).

    [102] T. Kirchner et al. Signed real-time delay multiply and sum beamforming for multispectral photoacoustic imaging. J. Imaging, 4, 121(2018).

    [103] S. Mulani, S. Paul, M. S. Singh. Higher-order correlation based real-time beamforming in photoacoustic imaging. J. Opt. Soc. Am. A, 39, 1805(2022).

    [104] S. Jeon et al. Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans. Photoacoustics, 15, 100136(2019).

    [105] S. Paul et al. Simplified delay multiply and sum based promising beamformer for real-time photoacoustic imaging. IEEE Trans. Instrum. Meas., 71, 1(2022).

    [106] M. A. Lediju et al. Short-lag spatial coherence of backscattered echoes: Imaging characteristics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 1377(2011).

    [107] M. A. Lediju Bell et al. In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging. J. Biomed. Opt., 19, 126011(2014).

    [108] M. T. Graham, M. A. L. Bell. Theoretical application of short-lag spatial coherence to photoacoustic imaging, 1(2017).

    [109] M. T. Graham, M. A. L. Bell. Photoacoustic spatial coherence theory and applications to coherence-based image contrast and resolution. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 2069(2020).

    [110] J. Tordera Mora et al. Generalized spatial coherence reconstruction for photoacoustic computed tomography. J. Biomed. Opt., 26, 046002(2021).

    [111] J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 57, 1408(1969).

    [112] J. Mann, W. Walker. A constrained adaptive beamformer for medical ultrasound: Initial results, 1807(2002).

    [113] M. Sasso, C. Cohen-Bacrie. Medical ultrasound imaging using the fully adaptive beamformer, ii/489(2005).

    [114] J. F. Synnevag, A. Austeng, S. Holm. Adaptive beamforming applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54, 1606(2007).

    [115] I. K. Holfort, F. Gran, J. A. Jensen. Broadband minimum variance beamforming for ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 314(2009).

    [116] B. M. Asl, A. Mahloojifar. Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56, 1923(2009).

    [117] S. Park et al. Adaptive beamforming for photoacoustic imaging. Opt. Lett., 33, 1291(2008).

    [118] M. Mozaffarzadeh et al. Linear-array photoacoustic imaging using minimum variance-based delay multiply and sum adaptive beamforming algorithm. J. Biomed. Opt., 23, 026002(2018).

    [119] M. Mozaffarzadeh et al. Eigenspace-based minimum variance combined with delay multiply and sum beamformer: application to linear-array photoacoustic imaging. IEEE J. Sel. Top. Quantum Electron, 25, 1(2018).

    [120] R. Al Mukaddim, R. Ahmed, T. Varghese. Improving minimum variance beamforming with sub-aperture processing for photoacoustic imaging, 2879(2021).

    [121] O. L. Frost. An algorithm for linearly constrained adaptive array processing. Proc. IEEE, 60, 926(1972).

    [122] R. Mallart, M. Fink. Adaptive focusing in scattering media through sound-speed inhomogeneities: the van cittert zernike approach and focusing criterion. J. Acoust. Soc. Am., 96, 3721(1994).

    [123] K. W. Hollman, K. Rigby, M. O’donnell. Coherence factor of speckle from a multi-row probe, 1257(1999).

    [124] P.-C. Li, M.-L. Li. Adaptive imaging using the generalized coherence factor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 50, 128(2003).

    [125] Y.-H. Wang, P.-C. Li. SNR-dependent coherence-based adaptive imaging for high-frame-rate ultrasonic and photoacoustic imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61, 1419(2014).

    [126] D. Wang et al. Coherent-weighted three-dimensional image reconstruction in linear-array-based photoacoustic tomography. Biomed. Opt. Express, 7, 1957(2016).

    [127] M. Mozaffarzadeh et al. “Image improvement in linear-array photoacoustic imaging using high resolution coherence factor weighting technique. BMC Biomed. Eng., 1, 10(2019).

    [128] S. Paul, S. Mandal, M. S. Singh. Noise adaptive beamforming for linear array photoacoustic imaging. IEEE Trans. Instrum. Meas., 70, 1(2021).

    [129] R. A. Mukaddim, T. Varghese. Spatiotemporal coherence weighting for in vivo cardiac photoacoustic image beamformation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 68, 586(2021).

    [130] M. Mozaffarzadeh et al. Enhanced linear-array photoacoustic beamforming using modified coherence factor. J. Biomed. Opt., 23, 026005(2018).

    [131] S. Shamekhi et al. Eigenspace-based minimum variance beamformer combined with sign coherence factor: application to linear-array photoacoustic imaging. Ultrasonics, 108, 106174(2020).

    [132] X. Ma et al. Multiple delay and sum with enveloping beamforming algorithm for photoacoustic imaging. IEEE Trans. Med. Imaging, 39, 1812(2020).

    [133] Q. Mao et al. Improving photoacoustic imaging in low signal-to-noise ratio by using spatial and polarity coherence. Photoacoustics, 28, 100427(2022).

    [134] M. Xu, L. V. Wang. Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration. Med. Phys., 29, 1661(2002).

    [135] M. Xu, L. V. Wang. Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging, 21, 814(2002).

    [136] M. Xu, Y. Xu, L. V. Wang. Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries. IEEE Trans. Biomed. Eng., 50, 1086(2003).

    [137] K. Shen et al. Negativity artifacts in back-projection based photoacoustic tomography. J. Phys. D: Appl. Phys., 54, 074001(2020).

    [138] R. Gao et al. Restoring the imaging quality of circular transducer array-based PACT using synthetic aperture focusing technique integrated with 2nd-derivative-based back projection scheme. Photoacoustics, 32, 100537(2023).

    [139] L. A. Kunyansky. Explicit inversion formulae for the spherical mean Radon transform. Inverse Probl., 23, 373(2007).

    [140] D. Finch, M. Haltmeier. Inversion of spherical means and the wave equation in even dimensions,”. SIAM J. Appl. Math., 68, 392(2007).

    [141] L. V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Prob. Imaging, 3, 649(2009).

    [142] P. Burgholzer et al. Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors. Inverse Probl., 23, S65(2007).

    [143] F. Natterer. “Photo-acoustic inversion in convex domains. Inverse Prob. Imaging, 6, 1(2012).

    [144] V. P. Palamodov. A uniform reconstruction formula in integral geometry. Inverse Probl., 28, 065014(2012).

    [145] M. Haltmeier. Exact reconstruction formula for the spherical mean Radon transform on ellipsoids. Inverse Probl., 30, 105006(2014).

    [146] M. Haltmeier. Universal inversion formulas for recovering a function from spherical means. SIAM J. Math. Anal., 46, 214(2014).

    [147] Y. Salman. An inversion formula for the spherical mean transform with data on an ellipsoid in two and three dimensions. J. Math. Anal. Appl., 420, 612(2014).

    [148] X. L. Deán-Ben, A. Ozbek, D. Razansky. Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging, 32, 2050(2013).

    [149] J. Yuan et al. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization. J. Biomed. Opt., 18, 86001(2013).

    [150] X. L. Deán-Ben, H. López-Schier, D. Razansky. Optoacoustic micro-tomography at 100 volumes per second. Sci. Rep., 7, 6850(2017).

    [151] Y. Zhang, L. Wang. Video-rate ring-array ultrasound and photoacoustic tomography. IEEE Trans. Med. Imaging, 39, 4369(2020).

    [152] Y. Wang, C. Li. Comprehensive framework of GPU-accelerated image reconstruction for photoacoustic computed tomography. J. Biomed. Opt., 29, 066006(2024).

    [153] Y. Zhang et al. Video-rate dual-modal wide-beam harmonic ultrasound and photoacoustic computed tomography. IEEE Trans. Med. Imaging, 41, 727(2021).

    [154] Z. Gao et al. Implementation and comparison of three image reconstruction algorithms in FPGA towards palm-size photoacoustic tomography. IEEE Sens. J., 23, 8605(2023).

    [155] M. Xu, G. Ku, L. V. Wang. Microwave-induced thermoacoustic tomography using multi-sector scanning. Med. Phys., 28, 1958(2001).

    [156] S. J. Norton. Reconstruction of a two-dimensional reflecting medium over a circular domain: exact solution. J. Acoust. Soc. Am., 67, 1266(1980).

    [157] S. J. Norton, M. Linzer. Ultrasonic reflectivity imaging in three dimensions: exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans. Biomed. Eng., BME-28, 202(1981).

    [158] Y. Xu, D. Feng, L. V. Wang. Exact frequency-domain reconstruction for thermoacoustic tomography. I. planar geometry. IEEE Trans. Med. Imaging, 21, 823(2002).

    [159] M. Haltmeier, O. Scherzer, G. Zangerl. A reconstruction algorithm for photoacoustic imaging based on the nonuniform FFT. IEEE Trans. Med. Imaging, 28, 1727(2009).

    [160] Y. Xu, M. Xu, L. V. Wang. Exact frequency-domain reconstruction for thermoacoustic tomography. II. cylindrical geometry. IEEE Trans. Med. Imaging, 21, 829(2002).

    [161] M. Haltmeier et al. Thermoacoustic tomography and the circular Radon transform: exact inversion formula. Math. Models Methods Appl. Sci., 17, 635(2007).

    [162] D. L. Colton, R. Kress, R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory, 93(1998).

    [163] R. Suda, M. Takami. A fast spherical harmonics transform algorithm. Math. Comput., 71, 703(2002).

    [164] M. A. Anastasio et al. Application of inverse source concepts to photoacoustic tomography. Inverse Probl., 23, S21(2007).

    [165] K. Wang, M. A. Anastasio. A simple Fourier transform-based reconstruction formula for photoacoustic computed tomography with a circular or spherical measurement geometry. Phys. Med. Biol., 57, N493(2012).

    [166] G. Beylkin. On representations of the Helmholtz Green’s function. Appl. Comput. Harmon. Anal., 70, 101633(2024).

    [167] M. Agranovsky, P. Kuchment. Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Probl., 23, 2089(2007).

    [168] G. Zangerl, O. Scherzer, M. Haltmeier. Circular integrating detectors in photo and thermoacoustic tomography. Inverse Probl. Sci. Eng., 17, 133(2009).

    [169] G. Zangerl, O. Scherzer, M. Haltmeier. Exact series reconstruction in photoacoustic tomography with circular integrating detectors. Commun. Math. Sci., 7, 665(2008).

    [170] B. E. Treeby, E. Z. Zhang, B. T. Cox. Photoacoustic tomography in absorbing acoustic media using time reversal. Inverse Probl., 26, 115003(2010).

    [171] Y. Hristova, P. Kuchment, L. Nguyen. Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Probl., 24, 055006(2008).

    [172] B. T. Cox, B. E. Treeby. Artifact trapping during time reversal photoacoustic imaging for acoustically heterogeneous media. IEEE Trans. Med. Imaging, 29, 387(2010).

    [173] B. T. Cox et al. K-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics. J. Acoust. Soc. Am., 121, 3453(2007).

    [174] P. Stefanov, G. Uhlmann. Thermoacoustic tomography with variable sound speed. Inverse Probl., 25, 075011(2009).

    [175] J. Qian et al. An efficient neumann series–based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed. SIAM J. Imaging Sci., 4, 850(2011).

    [176] S. R. Arridge et al. On the adjoint operator in photoacoustic tomography. Inverse Probl., 32, 115012(2016).

    [177] A. Rosenthal, V. Ntziachristos, D. Razansky. Optoacoustic methods for frequency calibration of ultrasonic sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58, 316(2011).

    [178] X. L. Dean-Ben et al. Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging, 31, 1922(2012).

    [179] K. Wang et al. Investigation of iterative image reconstruction in optoacoustic tomography, 379(2012).

    [180] J. Zhang et al. Effects of different imaging models on least-squares image reconstruction accuracy in photoacoustic tomography. IEEE Trans. Med. Imaging, 28, 1781(2009).

    [181] K. Wang et al. Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography. Phys. Med. Biol., 57, 5399(2012).

    [182] R. M. Lewitt. Multidimensional digital image representations using generalized kaiser–bessel window functions. J. Opt. Soc. Am. A, 7, 1834(1990).

    [183] M. Schweiger, S. R. Arridge. Image reconstruction in optical tomography using local basis functions. J. Electron. Imaging, 12, 583(2003).

    [184] G. B. Arfken, H. J. Weber, F. E. Harris. Mathematical Methods for Physicists: a Comprehensive Guide(2011).

    [185] S. Matej, R. M. Lewitt. Practical considerations for 3-D image reconstruction using spherically symmetric volume elements. IEEE Trans. Med. Imaging, 15, 68(1996).

    [186] C. B. Shaw et al. Least squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography. J. Biomed. Opt., 18, 080501(2013).

    [187] P. R. Stepanishen. Transient radiation from pistons in an infinite planar baffle. J. Acoust. Soc. Am., 49, 1629(1971).

    [188] J. C. Lockwood, J. G. Willette. High-speed method for computing the exact solution for the pressure variations in the nearfield of a baffled piston. J. Acoust. Soc. Am., 53, 735(1973).

    [189] K. Mitsuhashi, K. Wang, M. A. Anastasio. Investigation of the far-field approximation for modeling a transducer’s spatial impulse response in photoacoustic computed tomography. Photoacoustics, 2, 21(2014).

    [190] R. P. K. Jagannath, P. K. Yalavarthy. Minimal residual method provides optimal regularization parameter for diffuse optical tomography. J. Biomed. Opt., 17, 106015(2012).

    [191] P. C. Hansen. The L-curve and its use in the numerical treatment of inverse problems. Computational Inverse Problems in Electrocardiology, 119(2001).

    [192] D. Calvetti et al. Tikhonov regularization and the l-curve for large discrete ill-posed problems. J. Comput. Appl. Math., 123, 423(2000).

    [193] L. Bottou. Large-scale machine learning with stochastic gradient descent, 177(2010).

    [194] L. Bottou. Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade, 421(2012).

    [195] C. C. Paige, M. A. Saunders. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software, 8, 43(1982).

    [196] O. Axelsson. A generalized conjugate gradient, least square method. Numer. Math., 51, 209(1987).

    [197] T. Wang et al. Learned regularization for image reconstruction in sparse-view photoacoustic tomography. Biomed. Opt. Express, 13, 5721(2022).

    [198] J. Provost, F. Lesage. The application of compressed sensing for photo-acoustic tomography. IEEE Trans. Med. Imaging, 28, 585(2009).

    [199] Z. Guo et al. Compressed sensing in photoacoustic tomography in vivo. J. Biomed. Opt., 15, 021311(2010).

    [200] F. Lucka et al. Enhancing compressed sensing 4D photoacoustic tomography by simultaneous motion estimation. SIAM J. Imaging Sci., 11, 2224(2018).

    [201] S. Biton et al. Optoacoustic model-based inversion using anisotropic adaptive total-variation regularization. Photoacoustics, 16, 100142(2019).

    [202] A. Beck, M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2, 183(2009).

    [203] I. Daubechies et al. Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math., 63, 1(2010).

    [204] Y. Wang, W. Yin, J. Zeng. Global convergence of ADMM in nonconvex nonsmooth optimization. J. Sci. Comput., 78, 29(2019).

    [205] X. Li et al. Model-based optoacoustic tomography image reconstruction with non-local and sparsity regularizations. IEEE Access, 7, 102136(2019).

    [206] P. K. Yalavarthy et al. Non-local means improves total-variation constrained photoacoustic image reconstruction. J. Biophotonics, 14, e202000191(2021).

    [207] J. Prakash et al. Maximum entropy based non-negative optoacoustic tomographic image reconstruction. IEEE Trans. Biomed. Eng., 66, 2604(2019).

    [208] H. Liu et al. Curve-driven-based acoustic inversion for photoacoustic tomography. IEEE Trans. Med. Imaging, 35, 2546(2016).

    [209] A. Javaherian, S. Holman. A multi-grid iterative method for photoacoustic tomography. IEEE Trans. Med. Imaging, 36, 696(2016).

    [210] X. L. Dean-Ben, V. Ntziachristos, D. Razansky. Acceleration of optoacoustic model-based reconstruction using angular image discretization. IEEE Trans. Med. Imaging, 31, 1154(2012).

    [211] A. Buehler et al. Model-based optoacoustic inversions with incomplete projection data. Med. Phys., 38, 1694(2011).

    [212] A. Voulodimos et al. Deep learning for computer vision: a brief review. Comput. Intell. Neurosci., 2018, 7068349(2018).

    [213] D. W. Otter, J. R. Medina, J. K. Kalita. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst., 32, 604(2021).

    [214] S. S. Nisha, N. Meeral. Applications of deep learning in biomedical engineering. Handbook of Deep Learning in Biomedical Engineering Techniques and Applications, 245(2020).

    [215] G. Wang, J. C. Ye, B. De Man. Deep learning for tomographic image reconstruction. Nat. Mach. Intell., 2, 737(2020).

    [216] G. Wang. A perspective on deep imaging. IEEE Access, 4, 8914(2016).

    [217] G. Wang et al. Deep tomographic image reconstruction: yesterday, today, and tomorrow—editorial for the 2nd special issue ‘Machine Learning for Image Reconstruction’. IEEE Trans. Med. Imaging, 40, 2956(2021).

    [218] D. Liang et al. Deep magnetic resonance image reconstruction: inverse problems meet neural networks. IEEE Signal Process Mag., 37, 141(2020).

    [219] E. M. A. Anas et al. Enabling fast and high quality LED photoacoustic imaging: a recurrent neural networks based approach. Biomed. Opt. Express, 9, 3852(2018).

    [220] A. Hariri et al. Deep learning improves contrast in low-fluence photoacoustic imaging. Biomed. Opt. Express, 11, 3360(2020).

    [221] M. Yamakawa, T. Shiina. Artifact reduction in photoacoustic images by generating virtual dense array sensor from hemispheric sparse array sensor using deep learning. J. Med. Ultrason., 51, 169(2024).

    [222] J. Zhang et al. PAFormer: photoacoustic reconstruction via transformer with mask mechanism (IUS), 1(2022).

    [223] F. Zhang et al. Photoacoustic digital brain and deep-learning-assisted image reconstruction. Photoacoustics, 31, 100517(2023).

    [224] P. Farnia et al. High-quality photoacoustic image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging. Biomed. Phys. Eng. Express, 6, 045019(2020).

    [225] S. Guan et al. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal. IEEE J. Biomed. Health. Inf., 24, 568(2020).

    [226] J. Zhang et al. Limited-view photoacoustic imaging reconstruction with dual domain inputs under mutual information constraint(2020).

    [227] S. Guan et al. Dense dilated UNet: deep learning for 3D photoacoustic tomography image reconstruction(2021).

    [228] A. Creswell et al. Generative adversarial networks: an overview. IEEE Signal Process Mag., 35, 53(2018).

    [229] T. Vu et al. A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer. Commun. Pure Appl. Math., 245, 597(2020).

    [230] H. Shahid et al. Feasibility of a generative adversarial network for artifact removal in experimental photoacoustic imaging. Ultrasound Med. Biol., 48, 1628(2022).

    [231] M. Lu et al. Artifact removal in photoacoustic tomography with an unsupervised method. Biomed. Opt. Express, 12, 6284(2021).

    [232] H. Shan, G. Wang, Y. Yang. Accelerated correction of reflection artifacts by deep neural networks in photoacoustic tomography. Appl. Sci., 9, 2615(2019).

    [233] S. Jeon et al. A deep learning-based model that reduces speed of sound aberrations for improved in vivo photoacoustic imaging. IEEE Trans. Image Process., 30, 8773(2021).

    [234] Y. Gao et al. Deep learning-based photoacoustic imaging of vascular network through thick porous media. IEEE Trans. Med. Imaging, 41, 2191(2022).

    [235] V. Shijo et al. SwinIR for photoacoustic computed tomography artifact reduction, 1(2023).

    [236] W. Zheng et al. Deep-E enhanced photoacoustic tomography using three-dimensional reconstruction for high-quality vascular imaging. Sensors, 22, 7725(2022).

    [237] C. Cai et al. End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging. Opt. Lett., 43, 2752(2018).

    [238] I. Olefir et al. Deep learning-based spectral unmixing for optoacoustic imaging of tissue oxygen saturation. IEEE Trans. Med. Imaging, 39, 3643(2020).

    [239] C. Bench, A. Hauptmann, B. T. Cox. Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions. J. Biomed. Opt., 25, 085003(2020).

    [240] C. Yang, F. Gao. EDA-Net: dense aggregation of deep and shallow information achieves quantitative photoacoustic blood oxygenation imaging deep in human breast, 246(2019).

    [241] C. Yang et al. Quantitative photoacoustic blood oxygenation imaging using deep residual and recurrent neural network, 741(2019).

    [242] Z. Wang et al. Extractor-attention-predictor network for quantitative photoacoustic tomography. Photoacoustics, 38, 100609(2024).

    [243] N. Awasthi et al. PA-fuse: a deep supervised approach for fusion of photoacoustic images with distinct reconstruction characteristics. Biomed. Opt. Express, 10, 2227(2019).

    [244] J. Zhang et al. Photoacoustic image classification and segmentation of breast cancer: a feasibility study. IEEE Access, 7, 5457(2019).

    [245] N.-K. Chlis et al. A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography. Photoacoustics, 20, 100203(2020).

    [246] B. Lafci et al. Deep learning for automatic segmentation of hybrid optoacoustic ultrasound (OPUS) images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 68, 688(2021).

    [247] M. G. González, M. Vera, L. J. R. Vega. Combining band-frequency separation and deep neural networks for optoacoustic imaging. Opt. Lasers Eng., 163, 107471(2023).

    [248] H. Shahid et al. A deep learning approach for the photoacoustic tomography recovery from undersampled measurements. Front. Neurosci., 15, 598693(2021).

    [249] G. Godefroy, B. Arnal, E. Bossy. Compensating for visibility artefacts in photoacoustic imaging with a deep learning approach providing prediction uncertainties. Photoacoustics, 21, 100218(2021).

    [250] H. Zhang et al. A new deep learning network for mitigating limited-view and under-sampling artifacts in ring-shaped photoacoustic tomography. Comput. Med. Imaging Graph., 84, 101720(2020).

    [251] P. Rajendran, M. Pramanik. High frame rate (approximately 3 Hz) circular photoacoustic tomography using single-element ultrasound transducer aided with deep learning. J. Biomed. Opt., 27, 066005(2022).

    [252] P. Rajendran, M. Pramanik. Deep-learning-based multi-transducer photoacoustic tomography imaging without radius calibration. Opt. Lett., 46, 4510(2021).

    [253] H. Lan et al. Ki-GAN: knowledge infusion generative adversarial network for photoacoustic image reconstruction in vivo, 273(2019).

    [254] H. Lan et al. Y-Net: hybrid deep learning image reconstruction for photoacoustic tomography in vivo. Photoacoustics, 20, 100197(2020).

    [255] N. Davoudi et al. Deep learning of image and time-domain data enhances the visibility of structures in optoacoustic tomography. Opt. Lett., 46, 3029(2021).

    [256] M. Guo et al. AS-Net: fast photoacoustic reconstruction with multi-feature fusion from sparse data. IEEE Trans. Comput. Imaging, 8, 215(2022).

    [257] W. Li et al. Deep learning reconstruction algorithm based on sparse photoacoustic tomography system, 1(2021).

    [258] H. Lan, C. Yang, F. Gao. A jointed feature fusion framework for photoacoustic image reconstruction. Photoacoustics, 29, 100442(2023).

    [259] H. Li et al. NETT: solving inverse problems with deep neural networks. Inverse Probl., 36, 065005(2020).

    [260] S. Antholzer et al. NETT regularization for compressed sensing photoacoustic tomography, 272(2019).

    [261] C. Yang, H. Lan, F. Gao. Accelerated photoacoustic tomography reconstruction via recurrent inference machines, 6371(2019).

    [262] H. Lan et al. Compressed sensing for photoacoustic computed tomography based on an untrained neural network with a shape prior. Biomed. Opt. Express, 12, 7835(2021).

    [263] H. Lan, J. Gong, F. Gao. Deep learning adapted acceleration for limited-view photoacoustic image reconstruction. Opt. Lett., 47, 1911(2022).

    [264] H. Shan, G. Wang, Y. Yang. Simultaneous reconstruction of the initial pressure and sound speed in photoacoustic tomography using a deep-learning approach. Proc. SPIE, 11105, 1110504(2019).

    [265] Y. E. Boink, S. Manohar, C. Brune. A partially-learned algorithm for joint photo-acoustic reconstruction and segmentation. IEEE Trans. Med. Imaging, 39, 129(2020).

    [266] J. Ho, A. Jain, P. Abbeel. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst., 33, 6840(2020).

    [267] Z. Luo et al. Image restoration with mean-reverting stochastic differential equations(2023).

    [268] K. Guo et al. Score-based generative model-assisted information compensation for high-quality limited-view reconstruction in photoacoustic tomography. Photoacoustics, 38, 100623(2024).

    [269] S. Tong et al. Score-based generative models for photoacoustic image reconstruction with rotation consistency constraints(2023).

    [270] S. Dey et al. Score-based diffusion models for photoacoustic tomography image reconstruction, 2470(2024).

    [271] X. Song et al. Sparse-view reconstruction for photoacoustic tomography combining diffusion model with model-based iteration. Photoacoustics, 33, 100558(2023).

    [272] D. Waibel et al. Reconstruction of initial pressure from limited view photoacoustic images using deep learning, 196(2018).

    [273] H. Lan et al. Reconstruct the photoacoustic image based on deep learning with multi-frequency ring-shape transducer array, 7115(2019).

    [274] J. Feng et al. End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging. Biomed. Opt. Express, 11, 5321(2020).

    [275] H. Lan et al. Deep learning enabled real-time photoacoustic tomography system via single data acquisition channel. Photoacoustics, 22, 100270(2021).

    [276] K. Shen et al. Physics-driven deep learning photoacoustic tomography. Fundam. Res.(2024).

    [277] H. Lan et al. Masked cross-domain self-supervised deep learning framework for photoacoustic computed tomography reconstruction. Neural Netw., 179, 106515(2024).

    [278] S. Guan et al. Limited-view and sparse photoacoustic tomography for neuroimaging with deep learning. Sci. Rep., 10, 8510(2020).

    [279] M. Kim et al. Deep-learning image reconstruction for real-time photoacoustic system. IEEE Trans. Med. Imaging, 39, 3379(2020).

    [280] T. Tong et al. Domain transform network for photoacoustic tomography from limited-view and sparsely sampled data. Photoacoustics, 19, 100190(2020).

    [281] C. Dehner et al. DeepMB: deep neural network for real-time model-based optoacoustic image reconstruction with adjustable speed of sound(2022).

    [282] C. Dehner et al. Deep model-based optoacoustic image reconstruction (DeepMB), 66(2024).

    [283] D. Allman, A. Reiter, M. A. L. Bell. Photoacoustic source detection and reflection artifact removal enabled by deep learning. IEEE Trans. Med. Imaging, 37, 1464(2018).

    [284] X. Luo et al. Fast correction of “finite aperture effect” in photoacoustic tomography based on spatial impulse response. Photonics, 8, 356(2021).

    [285] B. Wang et al. Approximate back-projection method for improving lateral resolution in circular-scanning-based photoacoustic tomography. Med. Phys., 48, 3011(2021).

    [286] M.-L. Li, Y.-C. Tseng, C.-C. Cheng. Model-based correction of finite aperture effect in photoacoustic tomography. Opt. Express, 18, 26285(2010).

    [287] V. G. Andreev et al. Detection of optoacoustic transients with a rectangular transducer of finite dimensions, 153(2002).

    [288] S. A. Ermilov et al. Development of laser optoacoustic and ultrasonic imaging system for breast cancer utilizing handheld array probes, 28(2009).

    [289] K. B. Chowdhury et al. A synthetic total impulse response characterization method for correction of hand-held optoacoustic images. IEEE Trans. Med. Imaging, 39, 3218(2020).

    [290] L. Qi et al. Photoacoustic tomography image restoration with measured spatially variant point spread functions. IEEE Trans. Med. Imaging, 40, 2318(2021).

    [291] D. Xie et al. Spatially-variant image deconvolution for photoacoustic tomography. Opt. Express, 31, 21641(2023).

    [292] W. Dong et al. Image restoration for ring-array photoacoustic tomography system based on blind spatially rotational deconvolution. Photoacoustics, 38, 100607(2024).

    [293] K. T. Hsu, S. Guan, P. V. Chitnis. Comparing deep learning frameworks for photoacoustic tomography image reconstruction. Photoacoustics, 23, 100271(2021).

    [294] T. Wang et al. Sparse-view photoacoustic image quality enhancement based on a modified U-Net. Laser Optoelectron. Prog., 59, 0617022(2022).

    [295] T. Wang et al. Streak artifact suppressed back projection for sparse-view photoacoustic computed tomography. Appl. Opt., 62, 3917(2023).

    [296] Y. Zhao et al. Ultrasound-guided adaptive photoacoustic tomography. Opt. Lett., 47, 3960(2022).

    [297] M. Sandbichler et al. A novel compressed sensing scheme for photoacoustic tomography. SIAM J. Appl. Math., 75, 2475(2015).

    [298] J. Meng et al. High-speed, sparse-sampling three-dimensional photoacoustic computed tomography in vivo based on principal component analysis. J. Biomed. Opt., 21, 076007(2016).

    [299] P. Hu et al. Spatiotemporal antialiasing in photoacoustic computed tomography. IEEE Trans. Med. Imaging, 39, 3535(2020).

    [300] P. Hu, L. Li, L. V. Wang. Location-dependent spatiotemporal antialiasing in photoacoustic computed tomography. IEEE Trans. Med. Imaging, 42, 1210(2022).

    [301] C. Cai et al. Streak artifact suppression in photoacoustic computed tomography using adaptive back projection. Biomed. Opt. Express, 10, 4803(2019).

    [302] S. Hakakzadeh et al. A spatial-domain factor for sparse-sampling circular-view photoacoustic tomography. IEEE J. Sel. Top. Quantum Electron., 29, 1(2022).

    [303] Y. Wang et al. Enhancing sparse-view photoacoustic tomography with combined virtually parallel projecting and spatially adaptive filtering. Biomed. Opt. Express, 9, 4569(2018).

    [304] S. K. Patch. Thermoacoustic tomography-consistency conditions and the partial scan problem. Phys. Med. Biol., 49, 2305(2004).

    [305] J. K. Gamelin, A. Aguirre, Q. Zhu. Fast, limited-data photoacoustic imaging for multiplexed systems using a frequency-domain estimation technique. Med. Phys., 38, 1503(2011).

    [306] G. Paltauf, R. Nuster, P. Burgholzer. Weight factors for limited angle photoacoustic tomography. Phys. Med. Biol., 54, 3303(2009).

    [307] T. Wang, W. Liu, C. Tian. Combating acoustic heterogeneity in photoacoustic computed tomography: a review. J. Innov. Opt. Health Sci., 13, 2030007(2020).

    [308] Y. Zhang, L. Wang. Adaptive dual-speed ultrasound and photoacoustic computed tomography. Photoacoustics, 27, 100380(2022).

    [309] C. Cai et al. Feature coupling photoacoustic computed tomography for joint reconstruction of initial pressure and sound speed in vivo. Biomed. Opt. Express, 10, 3447(2019).

    [310] J. Wei, K. Shen, C. Tian. Comparisons of filtered back-projection and time reversal algorithms in photoacoustic tomography, 68(2023).

    [311] S. Liu et al. Ultrafast Filtered Back-Projection for Photoacoustic Computed Tomography(2024).

    [312] D. Van de Sompel et al. Comparison of deconvolution filters for photoacoustic tomography. PLoS One, 11, e0152597(2016).

    [313] K. Shen et al. Dual-domain neural network for sparse-view photoacoustic image reconstruction. Chin. J. Lasers, 49, 0507208(2022).

    [314] M. A. Anastasio et al. Half-time image reconstruction in thermoacoustic tomography. IEEE Trans. Med. Imaging, 24, 199(2005).

    [315] J. Poudel et al. Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method. J. Biomed. Opt., 22, 041018(2017).

    [316] B. E. Treeby et al. Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach. J. Biomed. Opt., 16, 090501(2011).

    [317] T. P. Matthews et al. Parameterized joint reconstruction of the initial pressure and sound speed distributions for photoacoustic computed tomography. SIAM J. Imaging Sci., 11, 1560(2018).

    [318] J. Xia et al. Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array. Opt. Lett., 38, 3140(2013).

    [319] E. Merčep et al. Transmission–reflection optoacoustic ultrasound (TROPUS) computed tomography of small animals. Light Sci. Appl., 8, 1(2019).

    [320] Z. Hu et al. Sound speed imaging of small animal organs by ultrasound computed tomography. JUSTC, 52, 8(2022).

    [321] J. Li et al. Deep learning-based quantitative optoacoustic tomography of deep tissues in the absence of labeled experimental data. Optica, 9, 32(2022).

    [322] B. He et al. From signal to knowledge: the diagnostic value of rawdata in artificial intelligence prediction of human data for the first time. Engineering, 34, 60(2022).

    [323] W. Fu et al. Ultracompact meta-imagers for arbitrary all-optical convolution. Light Sci. Appl., 11, 62(2022).

    [324] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [325] Q. Jiang, G. Jin, L. Cao. When metasurface meets hologram: principle and advances. Adv. Opt. Photonics, 11, 518(2019).

    [326] S. Sun et al. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics, 11, 380(2019).

    [327] Y. Zhao et al. Ultraviolet metalens for photoacoustic microscopy with an elongated depth of focus. Opt. Lett., 48, 3435(2023).

    [328] W. Song et al. Ultraviolet metasurface-assisted photoacoustic microscopy with great enhancement in DOF for fast histology imaging. Photoacoustics, 32, 100525(2023).

    [329] A. Barulin et al. Dual-wavelength UV-visible metalens for multispectral photoacoustic microscopy: a simulation study. Photoacoustics, 32, 100545(2023).

    [330] C. Tian et al. Non-contact photoacoustic imaging using a commercial heterodyne interferometer. IEEE Sens. J., 16, 2079(2016).

    [331] B. Dong, C. Sun, H. F. Zhang. Optical detection of ultrasound in photoacoustic imaging. IEEE Trans. Biomed. Eng., 64, 4(2016).

    [332] G. Wissmeyer et al. Looking at sound: optoacoustics with all-optical ultrasound detection. Light Sci. Appl., 7, 53(2018).

    [333] V. V. Yakovlev et al. Ultrasensitive non-resonant detection of ultrasound with plasmonic metamaterials. Adv. Mater., 25, 2351(2013).

    [334] J. Weber, P. C. Beard, S. E. Bohndiek. Contrast agents for molecular photoacoustic imaging. Nat. Methods, 13, 639(2016).

    [335] W. Li, X. Chen. Gold nanoparticles for photoacoustic imaging. Nanomed., 10, 299(2015).

    [336] T.-H. Shin et al. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem. Soc. Rev., 44, 4501(2015).

    [337] Y. Mantri, J. V. Jokerst. Engineering plasmonic nanoparticles for enhanced photoacoustic imaging. ACS Nano, 14, 9408(2020).

    [338] C. Tian et al. Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells. Adv. Sci., 3, 1600237(2016).

    [339] V. P. Nguyen et al. Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging. Nat. Commun., 12, 34(2021).

    [340] K. Pu et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol., 9, 233(2014).

    [341] S. Y. Ong et al. Recent advances in polymeric nanoparticles for enhanced fluorescence and photoacoustic imaging. Angew. Chem. Int. Ed., 60, 17797(2021).

    Chao Tian, Kang Shen, Wende Dong, Fei Gao, Kun Wang, Jiao Li, Songde Liu, Ting Feng, Chengbo Liu, Changhui Li, Meng Yang, Sheng Wang, Jie Tian, "Image reconstruction from photoacoustic projections," Photon. Insights 3, R06 (2024)
    Download Citation