• NUCLEAR TECHNIQUES
  • Vol. 48, Issue 2, 020604 (2025)
Ruixiao ZHANG, Yanan HE, Jing ZHANG*, Yingwei WU..., Wenxi TIAN, Suizheng QIU and Guanghui SU|Show fewer author(s)
Author Affiliations
  • School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
  • show less
    DOI: 10.11889/j.0253-3219.2025.hjs.48.230206 Cite this Article
    Ruixiao ZHANG, Yanan HE, Jing ZHANG, Yingwei WU, Wenxi TIAN, Suizheng QIU, Guanghui SU. Preliminary design of SiC composite cladding fuel rod with lead-bismuth eutectic filled pellet-cladding gap[J]. NUCLEAR TECHNIQUES, 2025, 48(2): 020604 Copy Citation Text show less
    Flowchart of FRAPCON4.0 computation with gap filling model
    Fig. 1. Flowchart of FRAPCON4.0 computation with gap filling model
    Average liner power of a fuel rod
    Fig. 2. Average liner power of a fuel rod
    Comparison of fuel average temperature with different initial filling height (color online)
    Fig. 3. Comparison of fuel average temperature with different initial filling height (color online)
    Comparison of internal pressure with different initial filling height (color online)
    Fig. 4. Comparison of internal pressure with different initial filling height (color online)
    Average liner power of high power fuel rod
    Fig. 5. Average liner power of high power fuel rod
    Comparison of void volume with optimized initial gas pressure and plenum length
    Fig. 6. Comparison of void volume with optimized initial gas pressure and plenum length
    Comparison of internal pressure with optimized of initial gas pressure and plenum length
    Fig. 7. Comparison of internal pressure with optimized of initial gas pressure and plenum length
    Variation of failure probability with initial fabricated gap sizes
    Fig. 8. Variation of failure probability with initial fabricated gap sizes
    Diagram of fuel rod designs (color online) (a) UO2-SiC, (b) Void UO2-SiC, (c) UO2-LBE-SiC
    Fig. 9. Diagram of fuel rod designs (color online) (a) UO2-SiC, (b) Void UO2-SiC, (c) UO2-LBE-SiC
    Comparison of peak fuel temperatures
    Fig. 10. Comparison of peak fuel temperatures
    Comparison of gap size variation over time
    Fig. 11. Comparison of gap size variation over time
    Comparison of maximum fission gas release variation over time
    Fig. 12. Comparison of maximum fission gas release variation over time
    Comparison of fuel rod internal pressure variation over time
    Fig. 13. Comparison of fuel rod internal pressure variation over time
    Comparison of contact pressure variation over time
    Fig. 14. Comparison of contact pressure variation over time
    Comparison of cladding hoop stress (a) CMC layer, (b) CVD layer
    Fig. 15. Comparison of cladding hoop stress (a) CMC layer, (b) CVD layer
    物性Property关系式Model

    ΔVV0sat:饱和肿胀体积变化率[17]

    Saturated swelling volume change / %

    Tirr:辐照温度 Irradiation temperature / K

    ΔVV0sat=4.82-0.00617Tirr+2.17×10-6Tirr2

    ΔVV0irr:辐照肿胀体积变化率[18]

    Irradiation swelling volume change / %

    γ:辐照剂量 Irradiation dose / dpa

    γsat= 1 dpa

    ΔVV0irr=ΔVV0sat1-exp-6γγsat

    KirrCVD:CVD辐照后热导率[17]

    Thermal conductivity of CVD SiC after irradiation / W·m-1·K-1

    KirrCVD=-0.0003+1.05×10-5T+0.06×ΔVV0-1

    Knon_irrCMC:CMC未受辐照热导率[19] -

    Thermal conductivity of CMC SiC without irradiation / W·m-1·K-1

    Knon_irrCMC(T)=(0.0807+7.157×10-5T)-1

    Kirr_satCMC:CMC辐照后热导率[19]

    Thermal conductivity of CMC SiC after irradiation / W·m-1·K-1

    Kirr_satCMC(Tirr)=-1.484ΔVV0sat(Tirr)+0.3429

    α:热膨胀系数[20]

    Thermal expansivity / K-1

    α(T)=10-6(-0.7765+1.435×10-5T2+3.8289×10-9T3)

    Enon_irrCVD:CVD未受辐照杨氏模量[21]

    CVD unirradiated Young's modulus / Pa

    Vp:CVD孔隙率 CVD Porosity, 0.02

    Enon_irrCVD(T,Vp)=460×109exp(-3.57Vp)-0.04exp(-962T)

    EirrCVD:CVD辐照后杨氏模量[22]

    CVD irradiated Young's modulus / Pa

    EirrCVD=Enon_irrCVD1-0.15×ΔVV0

    CVD/CMC泊松比

    CVD and CMC Poisson's ratio

    0.21/0.13
    Table 1. Material properties of SiC

    燃料棒局部线功率

    Rod local linear

    power

    / W·m-1

    芯块外半径

    Pellet outer

    surface radius

    / mm

    间隙宽度

    Gap size

    / μm

    LBE间隙平均温度

    LBE gap average

    temperature

    / K

    间隙温差

    Gap temperature difference / K

    FRAPCON计算值

    FRAPCON result

    理论值

    Theoretical result

    17.664.11644.0735.12.0422.044
    30.004.17720.6869.41.4331.438
    19.724.16238.81 106.91.5341.526
    Table 2. Verification result of LBE gap filled model
    参数Parameter参数值Value
    包壳外径 Cladding diameter9.76 mm
    包壳厚度(CMC/CVD) Cladding thickness0.45/0.25 mm
    间隙尺寸 Gap size80 μm

    活性区长度 Activate length

    上空腔长度 Plenum length

    3.657 6 m

    0.175 m

    富集度 Enrichment4.8%

    初始内压 Initial rod pressure

    栅距 Rod pitch

    2.41 MPa

    12.6 mm

    冷却剂入口温度 Coolant inlet temperature565.7 K
    冷却剂流量 Coolant mass flow rate3 434 kg·m-1·s-1
    冷却剂压力 Coolant Pressure15.5 MPa
    Table 3. Parameters of fuel rod design and operating condition
    Ruixiao ZHANG, Yanan HE, Jing ZHANG, Yingwei WU, Wenxi TIAN, Suizheng QIU, Guanghui SU. Preliminary design of SiC composite cladding fuel rod with lead-bismuth eutectic filled pellet-cladding gap[J]. NUCLEAR TECHNIQUES, 2025, 48(2): 020604
    Download Citation