• Optics and Precision Engineering
  • Vol. 25, Issue 1, 263 (2017)
HE Fang, WANG Rong, YU Qiang, and JIA Wei-min
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20172501.0263 Cite this Article
    HE Fang, WANG Rong, YU Qiang, JIA Wei-min. Feature Extraction of Hyperspectral Images of Weighted Spatial and Spectral Locality Preserving Projection (WSSLPP)[J]. Optics and Precision Engineering, 2017, 25(1): 263 Copy Citation Text show less
    References

    [1] HUANG H, YANG M, ZHANG M J. Hyperspectral image classification via sparse discriminant manifold embedding [J].Opt. Precision Eng., 2013, 21(11): 2922-2930.(in Chinese)

    [2] WANG ZH L, FENG Y, WANG L. Compressive sensing imaging and reconstruction of pushbroom hyperspectra [J].Opt. Precision Eng., 2014, 22(11): 3129-3135.(in Chinese)

    [3] ZHANG CH Y, QIN Q M, CHEN L, et al.. Research and development of mineral identification utilizing hyperspectral remote sensing[J].Opt. Precision Eng., 2015, 23(8): 2407-2418.(in Chinese)

    [4] SONG J W, ZHANG ZH W, CHEN X M. Hyperspectral imagery compression via linear prediction and lookup tables [J].Opt. Precision Eng., 2013, 21(8): 2201-2208.(in Chinese)

    [5] TANG ZH Q, FU G Y, CHEN J, et al.. Multiscale segmentation-based sparse coding for hyperspectral image classification [J].Opt. Precision Eng., 2015, 23(9): 2708-2714.(in Chinese)

    [6] WANG X F, HOU CH L, YAN Q J, et al.. Noise estimation algorithm based on relevance vector machine for hyperspectral imagery [J].Infrared and Laser Engineering, 2014, 43(12): 4159-4163.(in Chinese)

    [7] LI CH G, GUO K. Lossless compression of hyperspectral images using three-stage prediction based on adaptive predictor reordering [J].Opt. Precision Eng., 2014, 22(3): 760-769.(in Chinese)

    [8] ZHOU Y C, PENG J T, CHEN C L P. Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification [J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1082-1095.

    [9] HUANG H, QU H P. Hyperspectral remote sensing image classification based on SSDE [J]. Opt. Precision Eng., 2014, 22(2): 434-442.(in Chinese)

    [10] LIU J M, LUO F L, HUANG H, et al.. Hyperspectral image classification by related neighbor locally linear embedding algorithm [J]. Opt. Precision Eng., 2014, 22(6): 1668-1676.(in Chinese)

    [11] JIN P L.Researches on spatial-spectral based dimensionality reduction and classification of hyperspectral data [D]. Xian: Xidian University, 2014.(in Chinese)

    [12] BANDOS T V, BRUZZONE L, CAMPS-VALLS G. Classification of hyperspectral image with regularized linear discriminant analysis [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 862-873.

    [13] KUO B C, LANDGREBE D A. Nonparametric weighted feature extraction for classification [J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(5): 1096-1105.

    [14] LU X, LI X. Multiresolution imaging[J]. IEEE Transactions on Cybernetics, 2014, 44(1): 149-160.

    [15] XIAO Y, ZHU Z, ZHAO Y, et al.. Topographic NMF for data representation [J]. IEEE Transactions on Cybernetics, 2014, 44(10): 1762-1771

    [16] WANG R, NIE F P, YANG X J, et al.. Robust 2DPCA with non-greedy-norm maximization for image analysis[J]. IEEE Transactions on Cybernetics, 2015, 45(5): 1108-1112.

    [17] LIAN Q SH, SHI B SH, CHEN SH ZH. Research advances on dictionary learning models, algorithms and applications [J]. Acta Automatica Sinica, 2015, 41(2): 240-260.(in Chinese)

    [18] HE X, YAN S, HU Y, et al.. Face recognition using laplacian faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.

    [19] HE X, CAI D, YAN S, et al.. Neighborhood preserving embedding [C]. Proceedings of the 10th IEEE Conference on Computer Vision, 2005, 2: 1208-1213.

    [20] VELASCO-FORERO S, MANIAN V. Improving hyperspectral image classification using spatial preprocessing [J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 297-301.

    [21] PHILLIPS R D, BLINN C E, WATSON L T, et al.. An adaptive noise-filtering algorithm for AVIRIS data with implications for classification accuracy [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(9): 3168-3179.

    [22] KANG X D, LI S T, BENEDIKTSSON J A. Spectral-Spatial hyperspectral image classification with edge-preserving filtering [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2666-2677.

    [23] HUANG X, ZHANG L. An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(12): 4173-4185.

    [24] HUANG X, ZHANG L, LI P. Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2): 260-264.

    [25] FAUVEL M, BENEDIKTSSON J A, CHANUSSOT J, et al.. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3804-3814.

    [26] MOSER G, SERPICO S B. Combining support vector machines and Markov random fields in an integrated framework for contextual image classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 2734-2752.

    [27] LI J, BIOUCAS-DIAS J M, PLAZA A.Spectral-Spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 809-823.

    [28] HUANG X, ZHANG L. An SVM ensemble approach combining spectral, structural, semantic features for the classification of high-resolution remotely sensed imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 257-272.

    [29] DENG CH ZH, ZHANG SH Q, WANG SH Q, et al.. Hyperspectral unmixing algorithm based on L1 regularization [J].Infrared and Laser Engineering, 2015, 44(3): 1092-1097.(in Chinese)

    [30] HUANG H, ZHENG X L.Hyperspectral image classification with combination of weighted spatial-spectral and KNN [J].Opt. Precision Eng., 2016, 24(4): 873-881.(in Chinese)

    [31] PU H Y, CHEN ZH, WANG B. A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7008-7022.

    CLP Journals

    [1] WANG Qing-chao, FU Guang-yuan, WANG Hong-qiao, WANG Chao. Fusion of multi-scale feature using multiple kernel learning for hyperspectral image land cover classification[J]. Optics and Precision Engineering, 2018, 26(4): 980

    [2] HUANG Hong, LI Zheng-ying, SHI Guang-yao, PAN Yin-song. Multi-features manifold discriminant embedding for hyperspectral image classification[J]. Optics and Precision Engineering, 2019, 27(3): 726

    [3] Hou Banghuan, Yao Minli, Jia Weimin, Shen Xiaowei, Jin wei. Hyperspectral image classification based on spatial-spectral structure preserving[J]. Infrared and Laser Engineering, 2017, 46(12): 1228001

    [4] HUANG Hong, CHEN Mei-li, DUAN Yu-le, SHI Guang-yao. Hyper-spectral image classification using spatial-spectral manifold reconstruction[J]. Optics and Precision Engineering, 2018, 26(7): 1827

    [5] HOU Bang-huan, YAO Min-li, JIA Wei-min, ZHANG Feng-gan, WANG Dao-ping. Spatial-spectral discriminant analysis for hyperspectral image classification[J]. Optics and Precision Engineering, 2018, 26(2): 450

    [6] ZHANG Qian-ying, XIE Xiao-zhen. Hyperspectral image restoration via weighted Schatten norm low-rank representation[J]. Optics and Precision Engineering, 2019, 27(2): 421

    HE Fang, WANG Rong, YU Qiang, JIA Wei-min. Feature Extraction of Hyperspectral Images of Weighted Spatial and Spectral Locality Preserving Projection (WSSLPP)[J]. Optics and Precision Engineering, 2017, 25(1): 263
    Download Citation