[6] WANG X F, HOU CH L, YAN Q J, et al.. Noise estimation algorithm based on relevance vector machine for hyperspectral imagery [J].Infrared and Laser Engineering, 2014, 43(12): 4159-4163.(in Chinese)
[8] ZHOU Y C, PENG J T, CHEN C L P. Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification [J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1082-1095.
[11] JIN P L.Researches on spatial-spectral based dimensionality reduction and classification of hyperspectral data [D]. Xian: Xidian University, 2014.(in Chinese)
[12] BANDOS T V, BRUZZONE L, CAMPS-VALLS G. Classification of hyperspectral image with regularized linear discriminant analysis [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 862-873.
[13] KUO B C, LANDGREBE D A. Nonparametric weighted feature extraction for classification [J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(5): 1096-1105.
[14] LU X, LI X. Multiresolution imaging[J]. IEEE Transactions on Cybernetics, 2014, 44(1): 149-160.
[15] XIAO Y, ZHU Z, ZHAO Y, et al.. Topographic NMF for data representation [J]. IEEE Transactions on Cybernetics, 2014, 44(10): 1762-1771
[16] WANG R, NIE F P, YANG X J, et al.. Robust 2DPCA with non-greedy-norm maximization for image analysis[J]. IEEE Transactions on Cybernetics, 2015, 45(5): 1108-1112.
[17] LIAN Q SH, SHI B SH, CHEN SH ZH. Research advances on dictionary learning models, algorithms and applications [J]. Acta Automatica Sinica, 2015, 41(2): 240-260.(in Chinese)
[18] HE X, YAN S, HU Y, et al.. Face recognition using laplacian faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
[19] HE X, CAI D, YAN S, et al.. Neighborhood preserving embedding [C]. Proceedings of the 10th IEEE Conference on Computer Vision, 2005, 2: 1208-1213.
[20] VELASCO-FORERO S, MANIAN V. Improving hyperspectral image classification using spatial preprocessing [J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 297-301.
[21] PHILLIPS R D, BLINN C E, WATSON L T, et al.. An adaptive noise-filtering algorithm for AVIRIS data with implications for classification accuracy [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(9): 3168-3179.
[22] KANG X D, LI S T, BENEDIKTSSON J A. Spectral-Spatial hyperspectral image classification with edge-preserving filtering [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2666-2677.
[23] HUANG X, ZHANG L. An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(12): 4173-4185.
[24] HUANG X, ZHANG L, LI P. Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2): 260-264.
[25] FAUVEL M, BENEDIKTSSON J A, CHANUSSOT J, et al.. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3804-3814.
[26] MOSER G, SERPICO S B. Combining support vector machines and Markov random fields in an integrated framework for contextual image classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 2734-2752.
[27] LI J, BIOUCAS-DIAS J M, PLAZA A.Spectral-Spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 809-823.
[28] HUANG X, ZHANG L. An SVM ensemble approach combining spectral, structural, semantic features for the classification of high-resolution remotely sensed imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 257-272.
[31] PU H Y, CHEN ZH, WANG B. A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7008-7022.