• Chinese Journal of Lasers
  • Vol. 43, Issue 8, 801007 (2016)
[in Chinese]1、*, Logan Wright2, [in Chinese]1, and Frank Wise2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/cjl201643.0801007 Cite this Article Set citation alerts
    [in Chinese], Logan Wright, [in Chinese], Frank Wise. Mode-Locked Regenerative Amplifier Based on Single Mode Fiber[J]. Chinese Journal of Lasers, 2016, 43(8): 801007 Copy Citation Text show less
    References

    [1] Pedersen S, Herek J L, Zewail A H. The validity of the ″diradical″ hypothesis: Direct femtosecond studies of the trasition state structures[J]. Science, 1994, 266(5189): 1359-1364.

    [2] Long Xuewen, Bai Jing, Liu Xin, et al. Inscription of waveguides in terbium gallium garnet using femtosecond laser[J]. Acta Optica Sinica, 2014, 34(4): 0432002.

    [3] Wang Jixiang, Ran Linging, Kong Degui, et al. Microstrucrures on the surface of Si induced by femtosecond laser[J]. Acta Optica Sinica, 2014, 34(s1): s114002.

    [4] Chen Chao, Yang Xianhui, Wang Chuang, et al. High-order tilted fiber Bragg gratings carved with femtosecond laser[J]. Acta Optica Sinica, 2014, 34(5): 0506001.

    [5] Li J, Chai L, Shi J, et al. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier[J]. Appl Phys Lett, 2014, 104(3): 031117.

    [6] Holzwarth R, Zimmermann M, Udem T, et al. Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb[J]. IEEE Journal of Quantum Electronics, 2001, 37(12): 1493-1501.

    [7] Li Pan, Shi Lei, Wang Xuefeng, et al. Experimental investigation of the supercontinuum generated by amplificated high repetition mode-locked pulses[J]. Acta Optica Sinica, 2015, 35(s2): s214006.

    [8] Mollenauer L F, Stolen R H. The soliton laser[J]. Opt Lett, 1984, 9(1): 13-15.

    [9] Nelson L E, Jones D J, Tamura K, et al. Ultrashort-pulse fiber ring lasers[J]. Applied Physics B: Lasers and Optics, 1997, 65(2): 277-294.

    [10] Tamura K, Ippen E P, Haus H A, et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Opt Lett, 1993, 18(13): 1080-1082.

    [11] Ilday F, Buckley J R, Clark W G, et al. Self-similar evolution of parabolic pulses in a laser[J]. Phys Rev Lett, 2004, 92(21): 213902.

    [12] Renninger W H, Chong A, Wise F W. Amplifier similaritons in a dispersion-mapped fiber laser[J]. Opt Express, 2011, 19(23): 22496-22501.

    [13] Oktem B, lgüdür C, Ilday F . Soliton-similariton fibre laser[J]. Nature Photon, 2010, 4(5): 307-311.

    [14] Chong A, Buckley J, Renninger W, et al. All-normal-dispersion femtosecond fiber laser[J]. Opt Express, 2006, 14(21): 10095-10100.

    [15] Chong A, Renninger W H, Wise F W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ[J]. Opt Lett, 2007, 32(16): 2408-2410.

    [16] Baumgartl M, Lecaplain C, Hideur A, et al. 66 W average power from a microjoule-class sub-100 fs fiber oscillator[J]. Opt Lett, 2012, 37(10): 1640-1642.

    [17] Huang Yutao, Fan Zhongwei, Niu Gang, et al. 100 kHz repetition rate picosecond regenerative amplifier with high pulse stability[J]. Chinese J Lasers, 2012, 39(5): 0502009.

    [in Chinese], Logan Wright, [in Chinese], Frank Wise. Mode-Locked Regenerative Amplifier Based on Single Mode Fiber[J]. Chinese Journal of Lasers, 2016, 43(8): 801007
    Download Citation