• Photonics Research
  • Vol. 7, Issue 11, A56 (2019)
Yang Liu1, Haijun Kang1, Dongmei Han1, Xiaolong Su1,2,*, and Kunchi Peng1,2
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1364/PRJ.7.000A56 Cite this Article Set citation alerts
    Yang Liu, Haijun Kang, Dongmei Han, Xiaolong Su, Kunchi Peng, "Experimental test of error-disturbance uncertainty relation with continuous variables," Photonics Res. 7, A56 (2019) Copy Citation Text show less
    References

    [1] F. Buscemi. All entangled quantum states are nonlocal. Phys. Rev. Lett., 108, 200401(2012).

    [2] F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, R. F. Werner. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett., 109, 100502(2012).

    [3] C. H. Bennett, S. J. Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 69, 2881-2884(1992).

    [4] X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, K. Peng. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. Phys. Rev. Lett., 88, 047904(2002).

    [5] J. Jin, J. Zhang, Y. Yan, F. Zhao, C. Xie, K. Peng. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett., 90, 167903(2003).

    [6] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [7] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys., 43, 172-198(1927).

    [8] E. H. Kennard. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys., 44, 326-352(1927).

    [9] H. Weyl. Gruppentheorie und Quantenmechanik(1928).

    [10] H. P. Robertson. The uncertainty principle. Phys. Rev., 34, 163-164(1929).

    [11] L. E. Ballentine. The statistical interpretation of quantum mechanics. Rev. Mod. Phys., 42, 358-381(1970).

    [12] M. Ozawa. Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurements. Phys. Rev. A, 67, 042105(2003).

    [13] M. J. W. Hall. Prior information: how to circumvent the standard joint-measurement uncertainty relation. Phys. Rev. A, 69, 052113(2004).

    [14] M. Ozawa. Uncertainty relations for joint measurements of noncommuting observables. Phys. Lett. A, 320, 367-374(2004).

    [15] M. Ozawa. Soundness and completeness of quantum root-mean-square errors. NPJ Quantum Inf., 5, 1(2019).

    [16] C. Branciard. Error-tradeoff and error-disturbance relations for incompatible quantum measurements. Proc. Natl. Acad. Sci. USA, 110, 6742-6747(2013).

    [17] P. Busch, P. Lahti, R. F. Werner. Heisenberg uncertainty for qubit measurements. Phys. Rev. A, 89, 012129(2014).

    [18] P. Busch, P. Lahti, R. F. Werner. Colloquium: quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys., 86, 1261-1281(2014).

    [19] J. Dressel, F. Nori. Certainty in Heisenberg’s uncertainty principle: revisiting definitions for estimation errors and disturbance. Phys. Rev. A, 89, 022106(2014).

    [20] K. Baek, T. Farrow, W. Son. Optimized entropic uncertainty relation for successive measurement. Phys. Rev. A, 89, 032108(2014).

    [21] F. Buscemi, M. J. W. Hall, M. Ozawa, M. M. Wilde. Noise and disturbance in quantum measurements: an information-theoretic approach. Phys. Rev. Lett., 112, 050401(2014).

    [22] X. M. Lu, S. Yu, K. Fujikawa, C. H. Oh. Improved error-tradeoff and error-disturbance relations in terms of measurement error components. Phys. Rev. A, 90, 042113(2014).

    [23] A. Barchielli, M. Gregoratti, A. Toigo. Measurement uncertainty relations for position and momentum: relative entropy formulation. Entropy, 19, 301(2017).

    [24] A. Barchielli, M. Gregoratti, A. Toigo. Measurement uncertainty relations for discrete observables: relative entropy formulation. Commun. Math. Phys., 357, 1253-1304(2018).

    [25] J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa, Y. Hasegawa. Experimental demonstration of a universally valid error-disturbance uncertainty relation in spin measurements. Nat. Phys., 8, 185-189(2012).

    [26] G. Sulyok, S. Sponar, J. Erhart, G. Badurek, M. Ozawa, Y. Hasegawa. Violation of Heisenberg’s error-disturbance uncertainty relation in neutron-spin measurements. Phys. Rev. A, 88, 022110(2013).

    [27] G. Sulyok, S. Sponar, B. Demirel, F. Buscemi, M. J. W. Hall, M. Ozawa, Y. Hasegawa. Experimental test of entropic noise-disturbance uncertainty relations for spin-1/2 measurements. Phys. Rev. Lett., 115, 030401(2015).

    [28] B. Demirel, S. Sponar, G. Sulyok, M. Ozawa, Y. Hasegawa. Experimental test of residual error-disturbance uncertainty relations for mixed spin-1/2 states. Phys. Rev. Lett., 117, 140402(2016).

    [29] M. Ringbauer, D. N. Biggerstaff, M. A. Broome, A. Fedrizzi, C. Branciard, A. G. White. Experimental joint quantum measurements with minimum uncertainty. Phys. Rev. Lett., 112, 020401(2014).

    [30] F. Kaneda, S. Y. Baek, M. Ozawa, K. Edamatsu. Experimental test of error-disturbance uncertainty relations by weak measurement. Phys. Rev. Lett., 112, 020402(2014).

    [31] L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, A. M. Steinberg. Violation of Heisenberg’s measurement-disturbance relationship by weak measurements. Phys. Rev. Lett., 109, 100404(2012).

    [32] A. P. Lund, H. M. Wiseman. Measuring measurement-disturbance relationships with weak values. New J. Phys., 12, 093011(2010).

    [33] S. Y. Baek, F. Kaneda, M. Ozawa, K. Edamatsu. Experimental violation and reformulation of the Heisenberg’s error-disturbance uncertainty relation. Sci. Rep., 3, 2221(2013).

    [34] M. M. Weston, M. J. W. Hall, M. S. Palsson, H. M. Wiseman, G. J. Pryde. Experimental test of universal complementarity relations. Phys. Rev. Lett., 110, 220402(2013).

    [35] W. Ma, Z. Ma, H. Wang, Z. Chen, Y. Liu, F. Kong, Z. Li, X. Peng, M. Shi, F. Shi, S. Fei, J. Du. Experimental test of Heisenberg’s measurement uncertainty relation based on statistical distances. Phys. Rev. Lett., 116, 160405(2016).

    [36] F. Zhou, L. Yan, S. Gong, Z. Ma, J. He, T. Xiong, L. Chen, W. Yang, M. Feng, V. Vedral. Verifying Heisenberg’s error-disturbance relation using a single trapped ion. Sci. Adv., 2, e1600578(2016).

    [37] T. Xiong, L. Yan, Z. Ma, F. Zhou, L. Chen, W. Yang, M. Feng, P. Busch. Optimal joint measurements of complementary observables by a single trapped ion. New J. Phys., 19, 063032(2017).

    [38] Y. Liu, Z. Ma, H. Kang, D. Han, M. Wang, Z. Qin, X. Su, K. Peng. Experimental test of error-tradeoff uncertainty relation using a continuous-variable entangled state. NPJ Quantum Inf., 5, 68(2019).

    [39] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd. Gaussian quantum information. Rev. Mod. Phys., 84, 621-669(2012).

    [40] X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, K. Peng. Gate sequence for continuous variable one-way quantum computation. Nat. Commun., 4, 2828(2013).

    CLP Journals

    [1] Xian-Min Jin, M. S. Kim, Brian J. Smith, "Quantum photonics: feature introduction," Photonics Res. 7, QP1 (2019)

    [2] Haijun Kang, Dongmei Han, Na Wang, Yang Liu, Shuhong Hao, Xiaolong Su, "Experimental demonstration of robustness of Gaussian quantum coherence," Photonics Res. 9, 1330 (2021)

    Yang Liu, Haijun Kang, Dongmei Han, Xiaolong Su, Kunchi Peng, "Experimental test of error-disturbance uncertainty relation with continuous variables," Photonics Res. 7, A56 (2019)
    Download Citation