• Photonics Research
  • Vol. 7, Issue 11, A56 (2019)
Yang Liu1, Haijun Kang1, Dongmei Han1, Xiaolong Su1、2、*, and Kunchi Peng1、2
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1364/PRJ.7.000A56 Cite this Article Set citation alerts
    Yang Liu, Haijun Kang, Dongmei Han, Xiaolong Su, Kunchi Peng. Experimental test of error-disturbance uncertainty relation with continuous variables[J]. Photonics Research, 2019, 7(11): A56 Copy Citation Text show less
    References

    [1] F. Buscemi. All entangled quantum states are nonlocal. Phys. Rev. Lett., 108, 200401(2012).

    [2] F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, R. F. Werner. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett., 109, 100502(2012).

    [3] C. H. Bennett, S. J. Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 69, 2881-2884(1992).

    [4] X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, K. Peng. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. Phys. Rev. Lett., 88, 047904(2002).

    [5] J. Jin, J. Zhang, Y. Yan, F. Zhao, C. Xie, K. Peng. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett., 90, 167903(2003).

    [6] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [7] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys., 43, 172-198(1927).

    [8] E. H. Kennard. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys., 44, 326-352(1927).

    [9] H. Weyl. Gruppentheorie und Quantenmechanik(1928).

    [10] H. P. Robertson. The uncertainty principle. Phys. Rev., 34, 163-164(1929).

    [11] L. E. Ballentine. The statistical interpretation of quantum mechanics. Rev. Mod. Phys., 42, 358-381(1970).

    [12] M. Ozawa. Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurements. Phys. Rev. A, 67, 042105(2003).

    [13] M. J. W. Hall. Prior information: how to circumvent the standard joint-measurement uncertainty relation. Phys. Rev. A, 69, 052113(2004).

    [14] M. Ozawa. Uncertainty relations for joint measurements of noncommuting observables. Phys. Lett. A, 320, 367-374(2004).

    [15] M. Ozawa. Soundness and completeness of quantum root-mean-square errors. NPJ Quantum Inf., 5, 1(2019).

    [16] C. Branciard. Error-tradeoff and error-disturbance relations for incompatible quantum measurements. Proc. Natl. Acad. Sci. USA, 110, 6742-6747(2013).

    [17] P. Busch, P. Lahti, R. F. Werner. Heisenberg uncertainty for qubit measurements. Phys. Rev. A, 89, 012129(2014).

    [18] P. Busch, P. Lahti, R. F. Werner. Colloquium: quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys., 86, 1261-1281(2014).

    [19] J. Dressel, F. Nori. Certainty in Heisenberg’s uncertainty principle: revisiting definitions for estimation errors and disturbance. Phys. Rev. A, 89, 022106(2014).

    [20] K. Baek, T. Farrow, W. Son. Optimized entropic uncertainty relation for successive measurement. Phys. Rev. A, 89, 032108(2014).

    [21] F. Buscemi, M. J. W. Hall, M. Ozawa, M. M. Wilde. Noise and disturbance in quantum measurements: an information-theoretic approach. Phys. Rev. Lett., 112, 050401(2014).

    [22] X. M. Lu, S. Yu, K. Fujikawa, C. H. Oh. Improved error-tradeoff and error-disturbance relations in terms of measurement error components. Phys. Rev. A, 90, 042113(2014).

    [23] A. Barchielli, M. Gregoratti, A. Toigo. Measurement uncertainty relations for position and momentum: relative entropy formulation. Entropy, 19, 301(2017).

    [24] A. Barchielli, M. Gregoratti, A. Toigo. Measurement uncertainty relations for discrete observables: relative entropy formulation. Commun. Math. Phys., 357, 1253-1304(2018).

    [25] J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa, Y. Hasegawa. Experimental demonstration of a universally valid error-disturbance uncertainty relation in spin measurements. Nat. Phys., 8, 185-189(2012).

    [26] G. Sulyok, S. Sponar, J. Erhart, G. Badurek, M. Ozawa, Y. Hasegawa. Violation of Heisenberg’s error-disturbance uncertainty relation in neutron-spin measurements. Phys. Rev. A, 88, 022110(2013).

    [27] G. Sulyok, S. Sponar, B. Demirel, F. Buscemi, M. J. W. Hall, M. Ozawa, Y. Hasegawa. Experimental test of entropic noise-disturbance uncertainty relations for spin-1/2 measurements. Phys. Rev. Lett., 115, 030401(2015).

    [28] B. Demirel, S. Sponar, G. Sulyok, M. Ozawa, Y. Hasegawa. Experimental test of residual error-disturbance uncertainty relations for mixed spin-1/2 states. Phys. Rev. Lett., 117, 140402(2016).

    [29] M. Ringbauer, D. N. Biggerstaff, M. A. Broome, A. Fedrizzi, C. Branciard, A. G. White. Experimental joint quantum measurements with minimum uncertainty. Phys. Rev. Lett., 112, 020401(2014).

    [30] F. Kaneda, S. Y. Baek, M. Ozawa, K. Edamatsu. Experimental test of error-disturbance uncertainty relations by weak measurement. Phys. Rev. Lett., 112, 020402(2014).

    [31] L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, A. M. Steinberg. Violation of Heisenberg’s measurement-disturbance relationship by weak measurements. Phys. Rev. Lett., 109, 100404(2012).

    [32] A. P. Lund, H. M. Wiseman. Measuring measurement-disturbance relationships with weak values. New J. Phys., 12, 093011(2010).

    [33] S. Y. Baek, F. Kaneda, M. Ozawa, K. Edamatsu. Experimental violation and reformulation of the Heisenberg’s error-disturbance uncertainty relation. Sci. Rep., 3, 2221(2013).

    [34] M. M. Weston, M. J. W. Hall, M. S. Palsson, H. M. Wiseman, G. J. Pryde. Experimental test of universal complementarity relations. Phys. Rev. Lett., 110, 220402(2013).

    [35] W. Ma, Z. Ma, H. Wang, Z. Chen, Y. Liu, F. Kong, Z. Li, X. Peng, M. Shi, F. Shi, S. Fei, J. Du. Experimental test of Heisenberg’s measurement uncertainty relation based on statistical distances. Phys. Rev. Lett., 116, 160405(2016).

    [36] F. Zhou, L. Yan, S. Gong, Z. Ma, J. He, T. Xiong, L. Chen, W. Yang, M. Feng, V. Vedral. Verifying Heisenberg’s error-disturbance relation using a single trapped ion. Sci. Adv., 2, e1600578(2016).

    [37] T. Xiong, L. Yan, Z. Ma, F. Zhou, L. Chen, W. Yang, M. Feng, P. Busch. Optimal joint measurements of complementary observables by a single trapped ion. New J. Phys., 19, 063032(2017).

    [38] Y. Liu, Z. Ma, H. Kang, D. Han, M. Wang, Z. Qin, X. Su, K. Peng. Experimental test of error-tradeoff uncertainty relation using a continuous-variable entangled state. NPJ Quantum Inf., 5, 68(2019).

    [39] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd. Gaussian quantum information. Rev. Mod. Phys., 84, 621-669(2012).

    [40] X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, K. Peng. Gate sequence for continuous variable one-way quantum computation. Nat. Commun., 4, 2828(2013).

    CLP Journals

    [1] Xian-Min Jin, M. S. Kim, Brian J. Smith. Quantum photonics: feature introduction[J]. Photonics Research, 2019, 7(12): QP1

    [2] Haijun Kang, Dongmei Han, Na Wang, Yang Liu, Shuhong Hao, Xiaolong Su. Experimental demonstration of robustness of Gaussian quantum coherence[J]. Photonics Research, 2021, 9(7): 1330

    Yang Liu, Haijun Kang, Dongmei Han, Xiaolong Su, Kunchi Peng. Experimental test of error-disturbance uncertainty relation with continuous variables[J]. Photonics Research, 2019, 7(11): A56
    Download Citation