• Chinese Optics Letters
  • Vol. 22, Issue 3, 031402 (2024)
Dan Wang1、2、3、*, Ping He2, Tangjian Zhou2, Mi Li2, Yingchen Wu1、2、3, Yanan Wang2, Jianli Shang2、**, Qingsong Gao2, Kai Zhang2, Chun Tang2, and Rihong Zhu1
Author Affiliations
  • 1School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • 2Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 430079, China
  • 3Graduate School of China Academy of Engineering Physics, Beijing 100193, China
  • show less
    DOI: 10.3788/COL202422.031402 Cite this Article Set citation alerts
    Dan Wang, Ping He, Tangjian Zhou, Mi Li, Yingchen Wu, Yanan Wang, Jianli Shang, Qingsong Gao, Kai Zhang, Chun Tang, Rihong Zhu. 22 kW near-diffraction-limited Yb:YAG slab laser amplifier without adaptive optics correction[J]. Chinese Optics Letters, 2024, 22(3): 031402 Copy Citation Text show less
    References

    [1] T. Weyrauch, M. A. Vorontsov, G. W. Carhart et al. Experimental demonstration of coherent beam combining over a 7 km propagation path. Opt. Lett., 36, 4455(2011).

    [2] Q. J. Gan, B. X. Jiang, P. D. Zhang et al. Research progress of high average power solid-state lasers. Laser Optoelectron. Progress, 54, 010003(2017).

    [3] P. Sprangle, B. Hafizi, A. Ting. NRL and the development of the laser weapon system. Future Force Nav. Sci. Technol. Mag., 2, 18(2015).

    [4] J. Deile, R. Brockmann, D. Havrilla. Current status and most recent developments of industrial high power disk lasers. Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, CThA4(2009).

    [5] X. Fu, Q. Liu, X. P. Yan et al. End-pumped Nd:YAG zigzag slab laser with weak pump absorption. Chin. Opt. Lett., 7, 492(2009).

    [6] Q. Gao, H. L. Zhang, J. Fayyaz. Laser diode partially end-pumped electro-optically Q-switched Yb:YAG slab laser. Chin. Opt. Lett., 17, 11(2019).

    [7] J. Liu, Y. Liu, X. J. Tang et al. A design of a surface-doped Yb:YAG slab laser with high power and high efficiency. Chin. Opt. Lett., 16, 101401(2018).

    [8] G. D. Goodno, H. Komine, S. J. McNaught et al. Coherent combination of high-power, zigzag slab lasers. Opt. Lett., 31, 1247(2006).

    [9] M. Ganija, D. Ottaway, P. Veitch et al. Cryogenic, high power, near diffraction limited, Yb:YAG slab laser. Opt. Express, 21, 6973(2013).

    [10] J. Marmo, H. Injeyan, H. Komine et al. Joint high power solid state laser program advancements at Northrop Grumman. Proc. SPIE, 7195, 719507(2009).

    [11] S. J. McNaught, C. P. Asman, H. Injeyan et al. 100-kW coherently combined Nd:YAG MOPA laser array. Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, FThD2(2009).

    [12] G. D. Goodno, S. Palese, J. Harkenrider et al. Yb:YAG power oscillator with high brightness and linear polarization. Opt. Lett., 26, 1672(2001).

    [13] F. Y. Lu, M. L. Gong, H. Z. Xue et al. Optimizing the composite slab sizes in corner-pumped lasers. Opt. Laser Technol., 39, 949(2007).

    [14] X. M. Chen, L. Xu, H. Hu et al. High-efficiency, high-average-power, CW Yb:YAG zigzag slab master oscillator power amplifier at room temperature. Opt. Express, 24, 24517(2016).

    [15] L. Xu, Y. C. Wu, Y. L. Du et al. High brightness laser based on Yb:YAG MOPA chain and adaptive optics system at room temperature. Opt. Express, 26, 14592(2018).

    [16] D. Wang, Y. L. Du, Y. C. Wu et al. 20 kW class high-beam-quality CW laser amplifier chain based on a Yb:YAG slab at room temperature. Opt. Lett., 43, 3838(2018).

    [17] L. Huang, Y. M. Zheng, Y. D. Guo et al. 21.2 kW, 1.94 times diffraction-limit quasi-continuous-wave laser based on a multi-stage, power-scalable and adaptive optics controlled Yb:YAG master-oscillator-power-amplifier system. Chin. Opt. Lett., 18, 061402(2020).

    [18] Y. N. Wang, T. J. Zhou, J. L. Shang et al. Yb slab laser amplifier with a laser output of 7.13 kW, 2 times diffraction limit. Laser Optoelectron. Progress, 58, 1114007(2021).

    [19] M. Najafi, M. Shayganmanesh, M. M. Majidof et al. Nd:YAG end-pumped zigzag multi-pass slab amplifier optimization: numerical and experimental study regarding the saturation effects. Opt. Express, 30, 16184(2022).

    [20] Y. Namba, H. Tsuwa. Ultrafine finishing of sapphire single crystal. Ann. CIRP, 27, 325(1977).

    [21] J. M. Bennett, J. J. Shaffer, Y. Shibano et al. Float polishing of optical materials. Appl. Opt., 26, 696(1987).

    [22] H. G. Gao, J. L. Cao, B. Chen. Float polishing for super smooth surface. Opt. Technique, 21, 40(1995).

    [23] Z. L. Ma, L. R. Peng, J. L. Wang. Ultra-smooth polishing of high-precision optical surface. Optik, 124, 24(2013).

    [24] K. V. Vlasova, A. I. Makarov, N. F. Andreev et al. High-sensitive absorption measurement in transparent isotropic dielectrics with time-resolved photothermal common-path interferometry. Appl. Opt., 57, 6318(2018).

    [25] G. L. Bourdet. Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers. Appl. Opt., 39, 966(2000).

    [26] G. L. Bourdet. Numerical simulation of the amplification of a short laser pulse by a ytterbium doped amplifier longitudinally pumped by short pump pulses. Appl. Opt., 45, 4695(2006).

    [27] D. Albach, J. C. Chanteloup, G. Touzé. Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs. Opt. Express, 17, 3792(2009).

    [28] L. Chen, Y. Liu, H. Zhao et al. Multiphysics simulation of quasi-three-level end- pumped laser. Laser Infrared, 50, 58(2020).

    Dan Wang, Ping He, Tangjian Zhou, Mi Li, Yingchen Wu, Yanan Wang, Jianli Shang, Qingsong Gao, Kai Zhang, Chun Tang, Rihong Zhu. 22 kW near-diffraction-limited Yb:YAG slab laser amplifier without adaptive optics correction[J]. Chinese Optics Letters, 2024, 22(3): 031402
    Download Citation