• Frontiers of Optoelectronics
  • Vol. 15, Issue 3, 12200 (2022)
Jiajia Zheng1,2, Liuchong Fu1, Yuming He1, Kanghua Li1..., Yue Lu1,2, Jiayou Xue1,2, Yuxuan Liu1, Chong Dong1, Chao Chen1,* and Jiang Tang1,2|Show fewer author(s)
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2China-EU Institute for Clean and Renewable Energy (ICARE), Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-022-00040-5 Cite this Article
    Jiajia Zheng, Liuchong Fu, Yuming He, Kanghua Li, Yue Lu, Jiayou Xue, Yuxuan Liu, Chong Dong, Chao Chen, Jiang Tang. Fabrication and characterization of ZnO/Se1-xTex solar cells[J]. Frontiers of Optoelectronics, 2022, 15(3): 12200 Copy Citation Text show less
    References

    [1] Fritts, C.E.: On a new form of selenium cell, and some electrical discoveries made by its use. Am. J. Sci. 26(156), 465–472 (1883)

    [2] Bhatnagar, A.K., Reddy, K.V., Srivastava, V.: Optical energy gap of amorphous selenium: effect of annealing. J. Appl. Phys. 18(9), 149 (1985)

    [3] Tutihasi, S., Chen, I.: Optical properties and band structure of trigonal selenium. Phys. Rev. 158(3), 623–630 (1967)

    [4] Dowd, J.J.: Optical properties of selenium. Proc. Phys. Soc. B 64(9), 783–789 (1951)

    [5] Hegedus, S.S., Shafarman, W.N.: Thin-film solar cells: devic measurements and analysis. Prog. Photovolt. Res. Appl. 12(23), 155–176 (2004)

    [6] Rau, U., Werner, J.H.: Radiative efficiency limits of solar cells with lateral band-gap fluctuations. Appl. Phys. Lett. 84(19), 3735–3737 (2004)

    [7] Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., Sugimoto, H.: Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Int. J. Photovolt. 9(6), 1863–1867 (2019)

    [8] Yoo, J.J., Seo, G., Chua, M.R., Park, T.G., Lu, Y., Rotermund, F., Kim, Y.K., Moon, C.S., Jeon, N.J., Correa-Baena, J.P., Bulovic, V., Shin, S.S., Bawendi, M.G., Seo, J.: Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021)

    [9] Yang, G., Zhang, H., Li, S., Ren, Z., Fang, G., Lei, D., Li, G.: Enhanced efficiency and stability of triple-cation perovskite solar cells with CsPbIxBr3–x QDs “surface patches”. SmartMat 3(3), 513–521 (2022)

    [10] Liu, Y., Dong, B., Hagfeldt, A., Luo, J., Graetzel, M.: Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics. SmartMat 2(1), 33–37 (2021)

    [11] Romeo, A., Artegiani, E.: CdTe-based thin film solar cells: past, present and future. Energies 14(6), 1684 (2021)

    [12] Brooks, L.S.: The vapor pressures of tellurium and selenium. J. Am. Chem. Soc. 74(1), 227–229 (1952)

    [13] Ito, H., Oka, M., Ogino, T., Takeda, A., Mizushima, Y.: Selenium thin-film solar cell. Jpn. J. Appl. Phys. 23(Part 1, No. 6), 719–725 (1984)

    [14] Nakada, T., Kunioka, A.: Efficient ITO/Se heterojunction solar cells. Jpn. J. Appl. Phys. 23(Part 2, No. 8), 587 (1984)

    [15] Nakada, T., Kunioka, A.: Polycrystalline thin-film TiO2/Se solar cells. Jpn. J. Appl. Phys. 24(Part 2, No. 7), 536 (1985)

    [16] Nguyen, D.C., Tanaka, S., Nishino, H., Manabe, K., Ito, S.: 3-D solar cells by electrochemical-deposited Se layer as extremelythin absorber and hole conducting layer on nanocrystalline TiO2 electrode. Nanoscale Res. Lett. 8(1), 8 (2013)

    [17] Todorov, T.K., Singh, S., Bishop, D.M., Gunawan, O., Lee, Y.S., Gershon, T.S., Brew, K.W., Antunez, P.D., Haight, R.: Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material. Nat. Commun. 8(1), 682 (2017)

    [18] Tennakone, K., Kumara, G., Kottegoda, I., Perera, V., Aponsu, G.: Nanoporous n-/selenium/p-CuCNS photovoltaic cell. J. Phys. D Appl. Phys. 31(18), 2326–2330 (1998)

    [19] Wang, K., Shi, Y., Zhang, H., Xing, Y., Dong, Q., Ma, T.: Selenium as a photoabsorber for inorganic-organic hybrid solar cells. Phys. Chem. Chem. Phys. 16(42), 23316–23319 (2014)

    [20] Zhu, M., Hao, F., Ma, L., Song, T.B., Miller, C.E., Wasielewski, C.E., Li, X., Kanatzidis, M.G.: Solution-processed air-stable mesoscopic selenium solar cells. ACS Energy Lett. 1(2), 469–473 (2016)

    [21] Green, M.A.: The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009)

    [22] Green, M.A., Blakers, A.W., Shi, J., Keller, E.M., Wenham, S.R.: 19.1% efficient silicon solar cell. Appl. Phys. Lett. 44(12), 1163–1164 (1984)

    [23] Anzin, V.B., Eremets, M.I., Kosichkin, Y.V., Nadezhdinskii, A.I., Shirokov, A.M.: Measurement of the energy gap in tellurium under pressure. Phys. Status Solidi A Appl. Res. 42(1), 385–390 (1977)

    [24] Asendorf, R.: Space group of tellurium and selenium. J. Chem. Phys. 27(1), 11–16 (1957)

    [25] Yang, P., Zha, J., Gao, G., Zheng, L., Huang, H., Xia, Y., Xu, S., Xiong, T., Zhang, Z., Yang, Z.: Growth of tellurium nanobelts on h-BN for p-type transistors with ultrahigh hole mobility. Nano-Micro Lett. 14(1), 1–12 (2022)

    [26] Lin, Z., Wang, C., Chai, Y.: Emerging group-VI elemental 2D materials: preparations, properties, and device applications. Small 16(41), 2003319 (2020)

    [27] Jiang, J., Meng, F., Cheng, Q., Wang, A., Chen, Y., Qiao, J., Pang, J., Xu, W., Ji, H., Zhang, Y., Zhang, Q., Wang, S., Feng, X., Gu, L., Liu, H., Han, L.: Low lattice mismatch InSe–Se vertical Van der Waals heterostructure for high-performance transistors via strong Fermi-level depinning. Small Methods 4(8), 2000238 (2020)

    [28] Zhang, S., Pang, J., Cheng, Q., Yang, F., Chen, Y., Liu, Y., Li, Y., Gemming, T., Liu, X., Ibarlucea, B., Yang, J., Liu, H., Zhou, W., Cuniberti, G., Rümmeli, M.H.: High-performance electronics and optoelectronics of monolayer tungsten diselenide full film from pre-seeding strategy. InfoMat 3(12), 1455–1469 (2021)

    [29] Wang, Y., Pang, J., Cheng, Q., Han, L., Li, Y., Meng, X., Ibarlucea, B., Zhao, H., Yang, F., Liu, H.: Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 13(1), 1–52 (2021)

    [30] Hadar, I., Hu, X., Luo, Z., Dravid, V.P., Kanatzidis, M.G.: Nonlinear band gap tunability in selenium–tellurium alloys and its utilization in solar cells. ACS Energy Lett. 4(9), 2137–2143 (2019)

    [31] Tan, C., Amani, M., Zhao, C., Hettick, M., Song, X., Lien, D.H., Li, H., Yeh, M., Shrestha, V.R., Crozier, K.B., Scott, M.C., Javey, A.: Evaporated SexTe1-x thin films with tunable bandgaps for short-wave infrared photodetectors. Adv. Mater. 32(38), 2001329 (2020)

    [32] Cui, S., Chahal, R., Boussard-Plédel, C., Nazabal, V., Doualan, J.L., Troles, J., Lucas, J., Bureau, B.: From selenium- to telluriumbased glass optical fibers for infrared spectroscopies. Molecules 18(5), 5373–5388 (2013)

    [33] Jayah, N.A., Yahaya, H., Mahmood, M.R., Terasako, T., Yasui, K., Hashim, A.M.: High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature. Nanoscale Res. Lett. 10(1), 7 (2015)

    [34] Ting, H., Ni, L., Ma, S., Ma, Y., Xiao, L., Chen, Z.: Progress in electron-transport materials in application of perovskite solar cells. Acta Phys. Sin. 64(3), 038802 (2015)

    [35] Jauncey, G.E.M.: The scattering of X-rays and Bragg’s law. Proc. Natl. Acad. Sci. U.S.A. 10(2), 57–60 (1924)

    [36] Tauc, J.: Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 5(8), 721–729 (1970)

    [37] Denton, A.R., Ashcroft, N.W.: Vegard’s law. Phys. Rev. A 43(6), 3161–3164 (1991)

    [38] Carson, E.M., Watson, J.R.: Undergraduate students’ understandings of entropy and Gibbs free energy. U. Chem. Ed. 6, 4–12 (2002)

    [39] Dean, J.A.: Lange’s Handbook of Chemistry. McGraw-Hill, New York (1999)

    [40] Olin, A., Olang, B.N., Osadchii, E.G., Ohman, L.O., Rosen, E.: Chemical Thermodynamics of Selenium, OECD Nuclear Energy Agency, France (2005)

    [41] Scheer, R., Schock, H.W.: Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. Wiley-VCH, Baden-Württemberg, Germany (2011)

    [42] Parr, R.G.: Density functional theory. Annu. Rev. Phys. Chem. 34(1), 631–656 (1983)

    [43] Li, M., Chen, S., Zhao, X., Xiong, K., Wang, B., Shah, U.A., Gao, L., Lan, X.Z., Zhang, J.B., Hsu, H.Y., Tang, J., Song, H.: Matching charge extraction contact for infrared PbS colloidal quantum dot solar cells. Small 18(1), 2105495 (2022)

    [44] Chen, W., Zhang, N., Zhang, M.Y., Zhang, X.T., Gao, H., Wen, J.: Controllable growth of ZnO–ZnSe heterostructures for visiblelight photocatalysis. CrystEngComm 16(6), 1201–1206 (2014)

    [45] Gokmen, T., Gunawan, O., Mitzi, D.B.: Minority carrier diffusion length extraction in Cu2ZnSn(Se, S)4 solar cells. J. Appl. Phys. 114(11), 114511 (2013)

    [46] Sites, J.R., Mauk, P.H.: Diode quality factor determination for thin-film solar cells. Solar cells 27(1), 411-417 (1989)

    [47] Sites, J.R.: Quantification of losses in thin-film polycrystalline solar cells. Sol. Energy Mater. Sol. Cells 75(1–2), 243–251 (2003)

    [48] Liu, Y., Wu, W., Goddard, W.A., 3rd.: Tellurium: fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 140(2), 550–553 (2018)

    [49] Cao, Y., Zhu, X., Tong, X., Zhou, J., Ni, J., Zhang, J., Pang, J.: Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion. Front. Chem. Sci. Eng. 14(6), 997–1005 (2020)

    [50] Liao, W., Zhao, D., Yu, Y., Grice, C.R., Wang, C., Cimaroli, A.J., Schulz, P., Meng, W., Zhu, K., Xiong, R.G., Yan, Y.: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22. Adv. Mater. 28(42), 9333–9340 (2016)

    [51] Shockley, W., Queisser, H.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    [52] Abou-Ras, D., Kirchartz, T., Rau, U.: Advanced Characterization Techniques for Thin Film Solar Cells. Wiley-VCH, Germany (2016)

    [53] Proskuryakov, Y.Y., Durose, K., Taele, B.M., Welch, G.P., Oelting, S.: Admittance spectroscopy of CdTe∕CdS solar cells subjected to varied nitric-phosphoric etching conditions. J. Appl. Phys. 101(1), 014505 (2007)

    [54] Seto, J.Y.W.: The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46(12), 5247–5254 (1975)

    [55] Walter, T., Herberholz, R., Müller, C., Schock, H.W.: Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions. J. Appl. Phys. 80(8), 4411–4420 (1996)

    [56] McCandless, B.E., Buchanan, W.A., Thompson, C.P., Sriramagiri, G., Lovelett, R.J., Duenow, J., Albin, D., Jensen, S., Colegrove, E., Moseley, J., Moutinho, H., Harvey, S., Al-Jassim, M., Metzger, W.K.: Overcoming carrier concentration limits in polycrystalline CdTe thin films with in situ doping. Sci. Rep. 8(1), 14519 (2018)

    Jiajia Zheng, Liuchong Fu, Yuming He, Kanghua Li, Yue Lu, Jiayou Xue, Yuxuan Liu, Chong Dong, Chao Chen, Jiang Tang. Fabrication and characterization of ZnO/Se1-xTex solar cells[J]. Frontiers of Optoelectronics, 2022, 15(3): 12200
    Download Citation