• Nano-Micro Letters
  • Vol. 17, Issue 1, 040 (2025)
Chen Li1, Leilei Liang1, Baoshan Zhang1,*, Yi Yang1,**, and Guangbin Ji2,***
Author Affiliations
  • 1School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
  • 2College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01549-4 Cite this Article
    Chen Li, Leilei Liang, Baoshan Zhang, Yi Yang, Guangbin Ji. Magneto-Dielectric Synergy and Multiscale Hierarchical Structure Design Enable Flexible Multipurpose Microwave Absorption and Infrared Stealth Compatibility[J]. Nano-Micro Letters, 2025, 17(1): 040 Copy Citation Text show less
    References

    [1] Y. Wu, S. Tan, Y. Zhao, L. Liang, M. Zhou et al., Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog. Mater. Sci. 135, 101088 (2023).

    [2] H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu et al., Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12, 1805 (2021).

    [3] L. Liang, X. Yang, C. Li, R. Yu, B. Zhang et al., MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv. Mater. 36, e2313939 (2024).

    [4] B.-X. Li, Z. Luo, W.-G. Yang, H. Sun, Y. Ding et al., Adaptive and adjustable MXene/reduced graphene oxide hybrid aerogel composites integrated with phase-change material and thermochromic coating for synchronous visible/infrared camouflages. ACS Nano 17, 6875–6885 (2023).

    [5] X. Chen, Y. Li, S. Cheng, K. Wu, Q. Wang et al., Liquid metal-MXene-based hierarchical aerogel with radar-infrared compatible camouflage. Adv. Funct. Mater. 34, 2308274 (2024).

    [6] X. Chai, D. Zhu, Q. Chen, Y. Qing, K. Cao et al., Tailored composition of low emissivity top layer for lightweight visible light-infrared-radar multiband compatible stealth coating. Adv. Compos. Hybrid Mater. 5, 3094–3103 (2022).

    [7] C. Wen, B. Zhao, Y. Liu, C. Xu, Y. Wu et al., Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 33, 2214223 (2023).

    [8] Z. An, Y. Li, X. Luo, Y. Huang, R. Zhang et al., Multilaminate metastructure for high-temperature radar-infrared bi-stealth: topological optimization and near-room-temperature synthesis. Matter 5, 1937–1952 (2022).

    [9] L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, 2106195 (2022).

    [10] P. Wu, X. Kong, Y. Feng, W. Ding, Z. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater. 34, 2311983 (2024).

    [11] G. Fang, C. Liu, M. Xu, X. Zhang, Y. Wu, D.H. Kim, G. Ji, The elaborate design of multi-polarization effect by non-edge defect strategy for ultra-broad microwave absorption. Adv. Funct. Mater. (2024).

    [12] L. Liang, C. Li, X. Yang, Z. Chen, B. Zhang et al., Pneumatic structural deformation to enhance resonance behavior for broadband and adaptive radar stealth. Nano Lett. 24, 2652–2660 (2024).

    [13] M. Liu, Z. Wu, L. Yang, X. Lv, R. Zhang et al., Finite-sized atom reconstruction enhanced high-frequency multi-domain magnetic response. Adv. Funct. Mater. 33, 2307943 (2023).

    [14] Z. Gao, A. Iqbal, T. Hassan, S. Hui, H. Wu et al., Tailoring built-In electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption. Adv. Mater. 36, e2311411 (2024).

    [15] L. Wang, X. Yu, M. Huang, W. You, Q. Zeng et al., Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption. Carbon 172, 516–528 (2021).

    [16] K. Cao, W. Ye, Y. Fang, Y. Zhang, R. Zhao et al., Construction of three-dimensional porous network Fe-rGO aerogels with monocrystal magnetic Fe3O4@C core-shell structure nanospheres for enhanced microwave absorption. Mater. Today Phys. 42, 101383 (2024).

    [17] M. Wu, L. Rao, L. Liu, Y. Li, Y. Zhang et al., Urchin-like Fe3O4@C hollow spheres with core-shell structure: controllable synthesis and microwave absorption. J. Colloid Interface Sci. 649, 313–324 (2023).

    [18] C.-X. Lei, L.-F. Lin, S. Li, Q. Luo, L.-S. Wang et al., Fabrication of porous X-shaped Fe3O4@C core-shell structures for tunable microwave absorption. J. Alloys Compd. 976, 173164 (2024).

    [19] X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic Vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020).

    [20] Y. Liu, C. Tian, F. Wang, B. Hu, P. Xu et al., Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chem. Eng. J. 461, 141867 (2023).

    [21] Y. Zhao, H. Zhang, X. Yang, H. Huang, G. Zhao et al., In situ construction of hierarchical core–shell Fe3O4@C nanoparticles–helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption. Carbon 171, 395–408 (2021).

    [22] X. Zhang, Y. Liu, G. Qin, Break Snoek limit via superparamagnetic coupling in Fe3O4/silica multiple-core/shell nanoparticles. Appl. Phys. Lett. 106, 033105 (2015).

    [23] X. Wang, H. Zhu, B. Cao, T. Liu, Hollow Fe3O4/Fe@C nanocubes for broadband microwave absorption spanning low- and high-frequency bands. Chem. Eng. J. 490, 151552 (2024).

    [24] L. Wang, Z. Chen, X. Wang, L. Zhang, Z. Zhang et al., Fe3O4@C 3D foam for strong low-frequency microwave absorption. J. Materiomics 9, 148–156 (2023).

    [25] H. Zhu, Q. Li, C. Zheng, Y. Hong, Z. Xu et al., High-temperature infrared camouflage with efficient thermal management. Light Sci. Appl. 9, 60 (2020).

    [26] M. Pan, Y. Huang, Q. Li, H. Luo, H. Zhu et al., Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy 69, 104449 (2020).

    [27] B. Yao, X. Xu, Z. Han, W. Xu, G. Yang et al., Cephalopod-inspired polymer composites with mechanically tunable infrared properties. Sci. Bull. 68, 2962–2972 (2023).

    [28] C. Li, L. Liang, Y. Yang, B. Zhang, G. Ji, Interfacial engineering of core–shell structured FeCoNi@SnO2 magnetic composites for tunable radar-infrared compatible stealth. Chem. Eng. J. 481, 148354 (2024).

    [29] R. Zhao, S. Kang, C. Wu, Z. Cheng, Z. Xie et al., Designable electrical/thermal coordinated dual-regulation based on liquid metal shape memory polymer foam for smart switch. Adv. Sci. 10, e2205428 (2023).

    [30] C. Deng, H. Dong, K. Sun, Y. Kou, H. Liu et al., Synchronous visual/infrared stealth using an intrinsically flexible self-healing phase change film. Adv. Funct. Mater. 33, 2212259 (2023).

    [31] X. Zhang, Y. Yang, P. Xue, C. Valenzuela, Y. Chen et al., Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew. Chem. Int. Ed. 61, e202211030 (2022).

    [32] T. Kim, J.-Y. Bae, N. Lee, H.H. Cho, Metamaterials: hierarchical metamaterials for multispectral camouflage of infrared and microwaves. Adv. Funct. Mater. 29, 1970060 (2019).

    [33] M. He, J.R. Nolen, J. Nordlander, A. Cleri, N.S. McIlwaine et al., Deterministic inverse design of Tamm plasmon thermal emitters with multi-resonant control. Nat. Mater. 20, 1663–1669 (2021).

    [34] Y. Li, C. Xiong, H. Huang, X. Peng, D. Mei et al., 2D Ti3C2Tx MXenes: visible black but infrared white materials. Adv. Mater. 33, 2103054 (2021).

    [35] S. Wan, X. Li, Y. Chen, N. Liu, S. Wang et al., Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat. Commun. 13, 7340 (2022).

    [36] H. Lu, J. Hu, K. Zhang, J. Zhao, S. Deng et al., Microfluidic-assisted 3D printing zinc powder anode with 2D conductive MOF/MXene heterostructures for high-stable zinc-organic battery. Adv. Mater. 36, e2309753 (2024).

    [37] G. Zhang, H. Yang, H. Zhou, T. Huang, Y. Yang et al., MXene-mediated interfacial growth of 2D–2D heterostructured nanomaterials as cathodes for Zn-based aqueous batteries. Angew. Chem. Int. Ed. 63, e202401903 (2024).

    [38] J. Jing, H. Liu, X. Wang, Long-term infrared stealth by sandwich-like phase-change composites at elevated temperatures via synergistic emissivity and thermal regulation. Adv. Funct. Mater. 34, 2309269 (2024).

    [39] B.-F. Guo, Y.-J. Wang, C.-F. Cao, Z.-H. Qu, J. Song et al., Large-scale, mechanically robust, solvent-resistant, and antioxidant MXene-based composites for reliable long-term infrared stealth. Adv. Sci. 11, e2309392 (2024).

    [40] Y. Huang, B. Ma, A. Pattanayak, S. Kaur, M. Qiu et al., Infrared camouflage utilizing ultrathin flexible large-scale high-temperature-tolerant lambertian surfaces. Laser Photonics Rev. 15, 2000391 (2021).

    [41] Y. Huang, Y. Zhu, B. Qin, Y. Zhou, R. Qin et al., Hierarchical visible-infrared-microwave scattering surfaces for multispectral camouflage. Nanophotonics 11, 3613–3622 (2022).

    [42] Q. Yuan, P. Li, J. Liu, Y. Lin, Y. Cai et al., Facet-dependent selective adsorption of Mn-doped α-Fe2O3 nanocrystals toward heavy-metal ions. Chem. Mater. 29, 10198–10205 (2017).

    [43] W. Ma, X. Liu, T. Yang, J. Wang, Z. Qiu, Z. Cai, P. Bai, X. Ji, Y. Huang, Strong magnetic–dielectric synergistic gradient metamaterials for boosting superior multispectral ultra‐broadband absorption with low‐frequency compatibility. Adv. Funct. Mater. (2024).

    [44] W. Wei, F. Guo, C. Wang, L. Wang, Z. Sheng et al., Strain effects in Ru-Au bimetallic aerogels boost electrocatalytic hydrogen evolution. Small 20, 2310603 (2024).

    [45] Z. Hou, C. Cui, Y. Li, Y. Gao, D. Zhu et al., Lattice-strain engineering for heterogenous electrocatalytic oxygen evolution reaction. Adv. Mater. 35, e2209876 (2023).

    [46] C.T. Campbell, S.C. Parker, D.E. Starr, The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002).

    [47] M. Yu, S. Li, X. Ren, N. Liu, W. Guo et al., Magnetic bimetallic heterointerface nanomissiles with enhanced microwave absorption for microwave thermal/dynamics therapy of breast cancer. ACS Nano 18, 3636–3650 (2024).

    [48] X.L. Shi, M.S. Cao, J. Yuan, X.Y. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. (2009).

    [49] M. He, Hu. Jinwen, H. Yan, X. Zhong, Y. Zhang, P. Liu, J. Kong, Gu. Junwei, Shape anisotropic chain‐like CoNi/polydimethylsiloxane composite films with excellent low‐frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024).

    [50] Y. Zhang, L. Zhang, L. Tang, R. Du, B. Zhang, S-NiSe/HG nanocomposites with balanced dielectric loss encapsulated in room-temperature self-healing polyurethane for microwave absorption and corrosion protection. ACS Nano 18, 8411–8422 (2024).

    [51] Y. Zhang, H. Dong, C. Yu, Z. Wang, Y. Huang, Metastructure based broadband structural stealth with material-structure-function integration. Compos. Sci. Technol. 253, 110661 (2024).

    [52] H. Dong, Y. Zhang, C. Yu, Z. Wang, Y. Huang, Eco-friendly microwave absorption metastructure: design, optimization, and performance of CPVM based on PLA@CF. Chem. Eng. J. 493, 152477 (2024).

    [53] C. Liu, L. Xu, X. Xiang, Y. Zhang, L. Zhou et al., Achieving ultra-broad microwave absorption bandwidth around millimeter-wave atmospheric window through an intentional manipulation on multi-magnetic resonance behavior. Nano-Micro Lett. 16, 176 (2024).

    [54] F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 (2023).

    [55] K. Li, Z. Li, Z. Xiong, Y. Wang, H. Yang et al., Thermal camouflaging MXene robotic skin with bio-inspired stimulus sensation and wireless communication. Adv. Funct. Mater. 32, 2110534 (2022).

    [56] J. Lyu, Z. Liu, X. Wu, G. Li, D. Fang et al., Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13, 2236–2245 (2019).

    [57] R.C. Che, L.-M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004).

    [58] Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019).

    [59] Y. Zhang, P. Zhao, Q. Lu, Y. Zhang, H. Lei et al., Functional additive manufacturing of large-size metastructure with efficient electromagnetic absorption and mechanical adaptation. Compos. Part A Appl. Sci. Manuf. 173, 107652 (2023).

    [60] Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016).

    [61] W. Wang, Z. Li, X. Gao, Y. Huang, R. He, Material extrusion 3D printing of large-scale SiC honeycomb metastructure for ultra-broadband and high temperature electromagnetic wave absorption. Addit. Manuf. 85, 104158 (2024).

    [62] Z. Ma, K. Yang, D. Li, H. Liu, S. Hui et al., The electron migration polarization boosting electromagnetic wave absorption based on Ce atoms modulated yolk@shell FexN@NGC. Adv. Mater. 36, e2314233 (2024).

    Chen Li, Leilei Liang, Baoshan Zhang, Yi Yang, Guangbin Ji. Magneto-Dielectric Synergy and Multiscale Hierarchical Structure Design Enable Flexible Multipurpose Microwave Absorption and Infrared Stealth Compatibility[J]. Nano-Micro Letters, 2025, 17(1): 040
    Download Citation