• Acta Photonica Sinica
  • Vol. 43, Issue 6, 616004 (2014)
LIU Xiaoshan1、2、*, YUAN Cailei1, LIU Guiqiang1, FU Guolan1, and LUO Xingfang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20144306.0616004 Cite this Article
    LIU Xiaoshan, YUAN Cailei, LIU Guiqiang, FU Guolan, LUO Xingfang. Strain Distribution of Metal Nanoparticles Embedded in Lu2O3 Film[J]. Acta Photonica Sinica, 2014, 43(6): 616004 Copy Citation Text show less
    References

    [1] IBACH H. The role of surface stress in reconstruction,epitaxialgrowth and stabilization of mesoscopic structures [J]. Surface Science Reports, 1997, 29(5): 195-263.

    [2] ROBERTS M M, KLEIN L J, SAVAGE D E, et al. Elastically relaxed freestanding strainedsilicon nanomembranes [J]. Nature Materials, 2006, 5(5): 388-393.

    [3] JOHNSON C L, SNOECK E, EZCURDIA M, et al. Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles [J]. Nature Materials, 2007, 7(2): 120-124.

    [4] SHAN Z, ADESSO G, CABOT A, et al. Ultrahigh stress and strain in hierarchically structured hollow nanoparticles [J]. Nature Materials, 2008, 7(18): 947-952.

    [5] SMITH A M, MOHS A M, NIE S. Tuning the optical and electronic properties of colloidal nanoparticles by lattice strain [J]. Nature Nanotechnology, 2008, 4(1): 56-63.

    [6] TSENG J Y, CHEN Y T, HSU C H, et al. Effect of annealing time on structure, composition and electrical characteristics of self assembled Ptnanoparticles in metaloxidesemiconductor memory structures [J]. Ecs Journal of Solid State Science and Technology, 2012, 1(3): 47-51.

    [7] BRUS L. Noble metal nanoparticles: Plasmon electron transfer photochemistry and singlemolecule Raman spectroscopy [J]. Accounts of Chemical Research, 2008, 41(12): 1742-1749.

    [8] TSENG J Y, CHENG C W, WANG S Y, et al. Memory characteristics of Ptnanoparticles selfassembled from reduction of an embedded PtOx ultrathin film in metaloxidesemiconductor structures [J]. Applied Physics Letters, 2004, 85(13): 2595-2597.

    [9] YANG X C, HOU J W, LIU Y, et al. OPAA templatedirected synthesis and optical properties of metal nanoparticles [J]. Nanoscale Research Letters, 2013, 8(1): 1-8.

    [10] SUN Chen, LI Chuanhao, SHI Ruiying, et al. A study of influences of metal nanoparticles on absorbing efficiency of organic solar Cells [J]. Acta Photonica Sinica, 2012, 41(11): 1335-1341.

    [11] DURAISWAMY S, KHAN S A. Dropletbased microfluidic synthesis of anisotropic metal nanoparticles [J]. Small, 2009, 5(24): 2828-2834.

    [12] JIANG H, ZHAO T, LI C Z, et al. Functional mesoporous carbon nanotubes and their integration in situ with metal nanoparticles for enhanced electrochemical performances [J]. Chemical Communications, 2011, 47(30): 8590-8592.

    [13] ZHANG J W, ZHANG L, JIA Y Y, et al. Synthesis of spatially uniform metal alloys nanoparticles via a diffusion controlled growth strategy: The case of AuPd alloy trisoctahedralnanoparticles with tunable composition [J]. Nano Research, 2012, 5(9): 618-629.

    [14] JARVI T T, NORDLUND K. Sputtering of freestanding metal nanoparticles [J]. Nuclear Instruments & Methods In Physics Research Section B, 2012, 272(1): 66-69.

    [15] LIU Y L, WALKER A R H. Facile Onepot synthesis of metal semiconductor hybrid nanoparticles via chemical transformation: The case of CuCuxSheterodimers and heterooligomers [J]. Journal of Physical Chemistry C, 2010, 114(10): 4264-4271.

    [16] LIANG Y Y, SCHWAB M G, ZHI L J, et al. Direct access to metal or metal oxide nanoparticles integrated with onedimensional nanoporous carbons for electrochemical energy storage [J]. Journal of the American Chemical Society, 2010, 132(42): 15030-15037.

    [17] CHEW H, ZHENG F, CHOI W, et al. Influence of reductant and germanium concentration on the growth and stress development of germanium nanoparticles in silicon oxide matrix [J]. Nanotechnology, 2007, 18(6): 065302-065306.

    [18] WU R S, LUO X F, YUAN C L, et al. Dielectric matrix imposed stressstrain effect on photoluminescence of Genanoparticles [J]. Solid State Communications, 2009, 149(1516): 598-601.

    [19] YUAN C L, LEE P S. Enhanced charge storage capability of Ge/GeO2 core/shell nanostructure [J]. Nanotechnology, 2008, 19(35): 355206p1-355206p5.

    [20] YUAN C L, LEI W. Photoluminescence of Al2O3 nanoparticles induced by compressive stress [J]. Physica E, 2010, 42(5): 1687-1690.

    [21] BRANDES E A, BROOK G B. Smithells metals reference book [M]. ButterworthHeinemann, London, UK, 7th edition, 1992.

    [22] YUAN C L, YE S L, XU B, et al. Strain induced tetragonal SrTiO3 nanoparticles at room temperature [J]. Applied Physics Letters, 2012, 101(7): 071909p1-071909p4.

    [23] STREITZ F H, CAMMARATA R C, SIERADZKI K. Surfacestress effects on elastic properties. I. Thin metal films [J]. Physical Review B, 1994, 49(15): 10699-10706.

    [24] LIANG L H, LI J C, JIANG Q. Sizedependent elastic modulus of Cu and Au thin films [J]. Solid State Communications, 2002, 121(8): 453-455.

    [25] LIANG L H, SHEN C M, CHEN X P, et al. The sizedependent phonon frequency of semiconductor nanoparticles [J]. Journal of Physics: CondensedMatter, 2004, 16(3): 267-272.

    [26] LIANG L H, MA H S, WEI Y G. Sizedependent elastic modulus and vibration frequency of nanoparticles [J]. Journal of Nanomaterials, 2011, (1): 670857.

    LIU Xiaoshan, YUAN Cailei, LIU Guiqiang, FU Guolan, LUO Xingfang. Strain Distribution of Metal Nanoparticles Embedded in Lu2O3 Film[J]. Acta Photonica Sinica, 2014, 43(6): 616004
    Download Citation