• Acta Photonica Sinica
  • Vol. 51, Issue 1, 0151111 (2022)
Zhiwei GUO, Haitao JIANG, and Hong CHEN*
Author Affiliations
  • Key Laboratory of Advanced Microstructure Materials Ministry of Education,School of Physics Science and Engineering,Tongji University,Shanghai 200092,China
  • show less
    DOI: 10.3788/gzxb20225101.0151111 Cite this Article
    Zhiwei GUO, Haitao JIANG, Hong CHEN. Linear-crossing Metamaterials and Their Applications(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151111 Copy Citation Text show less
    References

    [1] E YABLONOVITCH. Inhibited spontaneous emission in solid state physics and electronics. Physical Review Letters, 58, 2059(1987).

    [2] S JOHN. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58, 2486(1987).

    [3] J D JOANNOPOULOS, S G JOHNSON, J N WINN et al. Photonic crystals: molding the flow of light(2011).

    [4] J B PENDRY. Negative refraction makes a perfect lens. Physical Review Letters, 85, 3966(2000).

    [5] R A SHELBY, D R SMITH, S SCHULTZ. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [6] N ENGHETA, R W ZIOLKOWSKI. Metamaterials: physics and engineering explorations. John Wiley and Sons(2006).

    [7] V CAI, V SHALAEV. Optical metamaterials: fundamentals and applications(2010).

    [8] J B PENDRY, A J HOLDEN, W J STEWART et al. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76, 4773(1996).

    [9] J B PENDRY, A J HOLDEN, D J ROBBINS et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999).

    [10] N ENGHETA. Pursuing near-zero response. Science, 340, 286-287(2013).

    [11] D SCHURIG, J J MOCK, B J JUSTICE et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [12] C SHENG, H LIU, Y WANG et al. Trapping light by mimicking gravitational lensing. Nature Photonics, 7, 902-906(2013).

    [13] D R SMITH, D SCHURIG. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Physical Review Letters, 90, 077405(2013).

    [14] A PODDUBNY, I IORSH, P BELOV et al. Hyperbolic metamaterials. Nature Photonics, 7, 948-957(2013).

    [15] P SHEKHAR, J ATKINSON, Z JACOB. Hyperbolic metamaterials: fundamentals and applications. Nano Convergence, 1, 1-17(2014).

    [16] L FERRARI, C H WU, D LEPAGE et al. Hyperbolic metamaterials and their applications. Progress in Quantum Electronics, 40, 1-40(2015).

    [17] Zhiwei GUO, Haitao JIANG, Hong CHEN. Hyperbolic metamaterials: From dispersion manipulation to applications. Journal of Applied Physics, 127, 071101(2020).

    [18] Zhiwei GUO, Haitao JIANG, Hong CHEN. Zero-index and hyperbolic metacavities: Fundamentals and applications. Journal of Physics D: Applied Physics, 55, 083001(2022).

    [19] Zhiwei GUO, Haitao JIANG, Kejia ZHU et al. Focusing and super-resolution with partial cloaking based on the linear-crossing metamaterials. Physical Review Applied, 10, 064048(2018).

    [20] Yuting YANG, Ziyuan JIA, Tao XU et al. Beam splitting and unidirectional cloaking using anisotropic zero-index photonic crystals. Applied Physics Letters, 114, 161905(2019).

    [21] Zhiwei GUO, Haitao JIANG, Hong CHEN. Linear-crossing metamaterials mimicked by multi-layers with two kinds of single negative materials. Journal of Physics: Photonics, 2, 011001(2020).

    [22] Zhiwei GUO, Haitao JIANG, Hong CHEN. Abnormal wave propagation in tilted linear-crossing metamaterials. Advanced Photonics Research, 2, 2000071(2020).

    [23] J DUAN, G ÁLVAREZ-PÉREZ, K V VORONIN et al. Enabling propagation of anisotropic polaritons along forbidden directions via a topological transition. Science Advances, 7, eabf2690(2021).

    [24] I I SMOLYANINOV, E E NARIMANOV. Metric signature transitions in optical metamaterials. Physical Review Letters, 105, 067402(2010).

    [25] H N KRISHNAMOORTHY, Z JACOB, E NARIMANOV et al. Topological transitions in metamaterials. Science, 336, 205-209(2012).

    [26] I I SMOLYANINOV, Y J HUNG, C C DAVIS. Magnifying superlens in the visible frequency range. Science, 315, 1699-1701(2007).

    [27] Z W LIU, H LEE, Y XIONG et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686-1686(2007).

    [28] S A BIEHS, V M MENON, G S AGARWAL. Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial. Physical Review B, 93, 245439(2016).

    [29] W D NEWMAN, C L CORTES, A AFSHAR et al. Observation of long-range dipole-dipole interactions in hyperbolic metamaterials. Science Advance, 4, eaar5278(2018).

    [30] Zhiwei GUO, Haitao JIANG, Yunhui LI et al. Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material. Optics Express, 26, 627-641(2018).

    [31] B D F CASSE, W T LU, Y J HUANG et al. Super-resolution imaging using a three-dimensional metamaterials nanolens. Applied Physics Letters, 96, 023114(2010).

    [32] J SUN, N M LITCHINITSER. Toward practical, subwavelength, visible-light photolithography with hyperlens. ACS Nano, 12, 542-548(2018).

    [33] J G HAYASHI, A STEFANI, S ANTIPOV et al. Towards subdiffraction imaging with wire array metamaterial hyperlenses at MIR frequencies. Optics Express, 27, 21420-21434(2019).

    [34] A V KABASHIN, P EVANS, S PASTKOVSKY et al. Plasmonic nanorod metamaterials for biosensing. Nature Materials, 8, 867-871(2009).

    [35] N VASILANTONAKIS, G A WURTZ, V A PODOLSKIY et al. Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement. Optics Express, 23, 14329-14343(2015).

    [36] K V SREEKANTH, Y ALAPAN, M ELKABBASH et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nature Materials, 15, 621-627(2016).

    [37] M WAN, P GU, W LIU et al. Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities. Applied Physics Letters, 110, 031103(2017).

    [38] K C SHEN, C T KU, C HSIEH et al. Deep‐ultraviolet hyperbolic metacavity laser. Advanced Materials, 30, 1706918(2018).

    [39] R M MA, R F OULTON. Applications of nanolasers. Nature Nanotechnology, 14, 12-22(2019).

    [40] O N KOZINA, L A MELNIKOV, I S NEFEDOV. A theory for terahertz lasers based on a graphene hyperbolic metamaterial. Journal of Optics, 22, 095003(2020).

    [41] J YAO, X YANG, X YIN et al. Three-dimensional nanometer-scale optical cavities of indefinite medium. Proceedings of the National Academy of Sciences, 108, 11327-11331(2011).

    [42] X YANG, J YAO, J RHO et al. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nature Photonics, 6, 450-454(2012).

    [43] Yuqian WANG, Zhiwei GUO, Youqi CHEN et al. Circuit-based magnetic hyperbolic cavities. Physical Review Applied, 13, 044024(2020).

    [44] P GU, J CHEN, S CHEN et al. Ultralarge Rabi splitting and broadband strong coupling in a spherical hyperbolic metamaterial cavity. Photonics Research, 9, 829-838(2021).

    [45] J XIN, J ZONG, J GAO et al. Extraction and control of permittivity of hyperbolic metamaterials with optical nonlocality. Optics Express, 29, 18572-18586(2021).

    [46] Y R HE, S L HE, X D YANG. Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials. Optics Letters, 37, 2907-2909(2012).

    [47] I I SMOLYANINOV. Giant Unruh effect in hyperbolic metamaterial waveguides. Optics Letters, 44, 2224-2227(2019).

    [48] J FU, Y JIN, J EVANS et al. Microwave Waveguide‐Type Hyperbolic Metamaterials. Advanced Photonics Research, 2, 2000043(2021).

    [49] Zhiwei GUO, Juan SONG, Haitao JIANG et al. Miniaturized backward coupler realized by the circuit-based planar hyperbolic waveguide. Advanced Photonics Research, 1, 2100035(2021).

    [50] I LIBERAL, N ENGHETA. Near-zero refractive index photonics. Nature Photonics, 11, 149-158(2017).

    [51] X NIU, X HU, S CHU et al. Epsilon‐near‐zero photonics: a new platform for integrated devices. Advanced Optical Materials, 6, 1701292(2018).

    [52] N KINSEY, C DEVAULT, A BOLTASSEVA et al. Near-zero-index materials for photonics. Nature Reviews Materials, 4, 742-760(2019).

    [53] F DENG, Y LI, Y SUN et al. Valley-dependent beams controlled by pseudomagnetic field in distorted photonic graphene. Optics Letters, 40, 3380-3383(2015).

    [54] J W DONG, X D CHEN, H ZHU et al. Valley photonic crystals for control of spin and topology. Nature Materials, 16, 298-302(2017).

    [55] S S KRUK, Z J WONG, E PSHENAY-SEVERIN et al. Magnetic hyperbolic optical metamaterials. Nature Communications, 7, 1-7(2016).

    [56] G V ELEFTHERIADES, A K IYER, P C KREMER. Planar negative refractive index media using periodically LC loaded transmission lines. IEEE Transactions on Microwave Theory and Techniques, 50, 2702-2712(2002).

    [57] C CALOZ, T ITOH. Electromagnetic metamaterials transmission line theory and microwave applications(2006).

    [58] A V CHSHELOKOVA, P V KAPITANOVA, A N PODDUBNY et al. Hyperbolic transmission-line metamaterials. Journal of Applied Physics, 112, 073116(2012).

    [59] A V SHCHELOKOVA, D S FILONOV, P V KAPITANOVA et al. Magnetic topological transition in transmission line metamaterials. Physical Review B, 90, 115155(2014).

    [60] A A HIGH, R C DEVLIN, A DIBOS et al. Visible-frequency hyperbolic metasurface. Nature, 522, 192-196(2015).

    [61] J S GOMEZ-DIAZ, M TYMCHENKO, A ALÙ. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Physical Review Letters, 114, 233901(2015).

    [62] P HUO, S ZHANG, Y LIANG et al. Hyperbolic metamaterials and metasurfaces: fundamentals and applications. Advanced Optical Materials, 7, 1801616(2019).

    [63] X LI, Z X LIANG, X H LIU et al. All-angle zero reflection at metamaterials surfaces. Applied Physics Letters, 93, 171111(2008).

    [64] Y H YANG, P F QIN, X LIN et al. Type-I hyperbolic metasurfaces for highly-squeezed designer polaritons with negative group velocity. Nature Communications, 10, 1-7(2019).

    [65] Kun YU, Zhiwei GUO, Haitao JIANG et al. Loss-induced topological transition of dispersion in metamaterials. Journal of Applied Physics, 119, 203102(2016).

    [66] Z W GUO, H T JIANG, Y SUN et al. Actively controlling the topological transition of dispersion based on electrically controllable metamaterials. Applied Sciences, 8, 596(2018).

    [67] J RAN, Y ZHANG, X CHEN et al. Frequency mixer based on Doppler effect. IEEE Microwave and Wireless Components Letters, 28, 43-45(2017).

    [68] Y CHEN, Z GUO, Y WANG et al. Experimental demonstration of the magnetic field concentration effect in circuit-based magnetic near-zero index media. Optics Express, 28, 17064-17075(2020).

    [69] P HUO, Y LIANG, S ZHANG et al. Angular optical transparency induced by photonic topological transitions in metamaterials. Laser & Photonics Reviews, 12, 1700309(2018).

    [70] W Y LIANG, Z LI, Y WANG et al. All-angle optical switch based on the zero reflection effect of graphene-dielectric hyperbolic metamaterials. Photonics Research, 7, 318-332(2019).

    [71] X HUANG, Y LAI, Z H HANG et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Materials, 10, 582-586(2011).

    [72] P MOITRA, Y YANG, Z ANDERSON et al. Realization of an all-dielectric zero-index optical metamaterial. Nature Photonics, 7, 791-795(2013).

    [73] X LIN, Y YANG, N RIVERA et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures. Proceedings of the National Academy of Sciences, 114, 6717-6721(2017).

    [74] Z ZHENG, J N CHEN, Y WANG et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Advanced Materials, 30, 1705318(2018).

    [75] X L SONG, Z Z LIU, J SCHEUER et al. Tunable polaritonic metasurface absorbers in mid-IR based on hexagonal boron nitride and vanadium dioxide layers. Journal of Physics D: Applied Physics, 52, 164002(2019).

    [76] J D CALDWELL, I AHARONOVICH, G CASSABOIS et al. Photonics with hexagonal boron nitride. Nature Reviews Materials, 4, 552-567(2019).

    [77] W MA, P ALONSO-GONZÁLEZ, S LI et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 562, 557-562(2018).

    [78] Z ZHENG, J CHEN, Y WANG et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Advanced Materials, 30, 1705318(2018).

    [79] Z ZHENG, N XU, S L OSCURATO et al. A mid-infrared biaxial hyperbolic van der Waals crystal. Science Advances, 5, eaav8690(2019).

    [80] M PAPAJ, C LEWANDOWSKI. Plasmonic nonreciprocity driven by band hybridization in Moire materials. Physical Review Letters, 125, 066801(2020).

    [81] G HU, A KRASNOK, Y MAZOR et al. Moiré hyperbolic metasurfaces. Nano Letters, 20, 3217-3224(2020).

    [82] G HU, Q OU, G SI et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 582, 209-213(2020).

    [83] G W HU, C Q ZHENG, J C NI et al. Enhanced light-matter interactions at photonic magic-angle topological transitions. Applied Physics Letters, 118, 211101(2021).

    [84] F PICARDI, A V ZAYATS, F J RODRÍGUEZ FORTUÑO. Janus and Huygens dipoles: Near-field directionality beyond spin-momentum locking. Physical Review Letters, 120, 117402(2018).

    [85] S J ZENG, Q ZHANG, X M ZHANG et al. Unidirectional excitation of plasmonic waves via a multilayered metal-dielectric-metal Huygens' nanoantenna. Optics Letters, 43, 3053-3056(2018).

    [86] Zhiwei GUO, Yang LONG, Haitao JIANG et al. Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources. Advanced Photonics, 3, 036001(2021).

    [87] Yang LONG, Jie REN, Zhiwei GUO et al. Designing all-electric subwavelength metasources for near-field photonic routings. Physical Review Letters, 125, 157401(2020).

    [88] P V KAPITANOVA, P GINZBURG, F J RODRÍGUEZ FORTUÑO et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nature Communications, 5, 1-8(2014).

    [89] K Y BLIOKH, D SMIRNOVA, F NORI et al. Quantum spin Hall effect of light. Science, 348, 1448-1451(2015).

    [90] P LODAHL, S MAHMOODIAN, S STOBBE et al. Chiral quantum optics. Nature, 541, 473-480(2017).

    [91] Z W GUO, H T JIANG, Y LONG et al. Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials. Scientific Reports, 7, 1-9(2017).

    [92] S GUDDALA, M KHATONIAR, N YAMA et al. Optical analog of valley Hall effect of 2D excitons in hyperbolic metamaterial. Optica, 8, 50-55(2021).

    [93] S B ZHANG, Y D XU, H Y CHEN et al. Photonic hyperinterfaces for light manipulations. Optica, 7, 687-693(2020).

    [94] L SHEN, X LIN, M Y SHALAGINOV et al. Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials. Applied Physics Reviews, 7, 021403(2020).

    [95] X X WU, X LI, R Y ZHANG et al. Deterministic scheme for two-dimensional type-II Dirac points and experimental realization in acoustics. Physical Review Letters, 124, 075501(2020).

    [96] M MILIĆEVIĆ, G MONTAMBAUX, T OZAWA et al. Type-III and tilted Dirac cones emerging from flat bands in photonic orbital graphene. Physical Review X, 9, 031010(2019).

    [97] H L HE, C Y QIU, L P YE et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature, 560, 61-64(2018).

    [98] J DURNIN. Exact solutions for nondiffracting beams. I. The scalar theory. Journal of the Optical Society of America A, 4, 651-654(1987).

    [99] J DURNIN, JR J J MICELI, J H EBERLY. Diffraction-free beams. Physical Review Letters, 58, 1499(1987).

    [100] L GAO, L SHAO, C D HIGGINS et al. Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell, 151, 1370-1385(2012).

    [101] L LI, T LI, S M WANG et al. Plasmonic Airy beam generated by in-plane diffraction. Physical Review Letters, 107, 126804(2011).

    [102] A NOVITSKY, C W QIU, H WANG. Single gradientless light beam drags particles as tractor beams. Physical Review Letters, 107, 203601(2011).

    [103] J LIN, J DELLINGER, P GENEVET et al. Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave. Physical Review Letters, 109, 093904(2012).

    [104] J ARLT, V GARCÉS-CHÁVEZ, W SIBBETT et al. Optical micromanipulation using a Bessel light beam. Optics Communications, 197, 239-245(2001).

    [105] D G GRIER. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [106] Y MATSUOKA, Y KIZUKA, T INOUE. The characteristics of laser micro drilling using a Bessel beam. Applied Physics A, 84, 423-430(2006).

    [107] M WOERDEMANN, C ALPMANN, M ESSELING et al. Advanced optical trapping by complex beam shaping. Laser & Photonics Reviews, 7, 839-854(2013).

    [108] Z WANG, S DONG, W LUO et al. High-efficiency generation of Bessel beams with transmissive metasurfaces. Applied Physics Letters, 112, 191901(2018).

    [109] I MURATAJ, M CHANNAB, E CARA et al. Hyperbolic metamaterials via hierarchical block copolymer nanostructures. Advanced Optical Materials, 9, 2001933(2021).

    [110] L Z YIN, F Y HAN, J ZHAO et al. Constructing hyperbolic metamaterials with arbitrary medium. ACS Photonics, 8, 1085-1096(2021).

    [111] S BASAK, O BAR‐ON, J SCHEUER. Perovskite/metal‐based hyperbolic metamaterials: Tailoring the permittivity properties of coexisting anisotropies in the visible region. Advanced Optical Materials, 9, 2001305(2021).

    [112] F LIU, L XIAO, Y YE et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nature Photonics, 11, 289(2017).

    [113] P TONKAEV, S ANOSHKIN, A PUSHKAREV et al. Acceleration of radiative recombination in quasi-2D perovskite films on hyperbolic metamaterials. Applied Physics Letters, 118, 091104(2021).

    [114] J M ZHAO, Y CHEN, Y J FENG et al. Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure. Applied Physics Letters, 92, 071114(2008).

    [115] P X ZHENG, Q XU, X Q SU et al. Anomalous wave propagation in topological transition metasurfaces. Advanced Optical Materials, 7, 1801483(2019).

    [116] X YIN, H ZHU, H J GUO et al. Hyperbolic metamaterial devices for wavefront manipulation. Laser & Photonics Reviews, 13, 1800081(2019).

    [117] K V SREEKANTH, P MAHALAKSHMI, S HAN et al. Brewster mode-enhanced sensing with hyperbolic metamaterial. Advanced Optical Materials, 7, 1900680(2019).

    [118] K V SREEKANTH, Q L OUYANG, S SREEJITH et al. Phase-change-material-based low-loss visible-frequency hyperbolic metamaterials for ultrasensitive label-free biosensing. Advanced Optical Materials, 7, 1900081(2019).

    [119] T A CHEN, I W UN, C C WEI et al. Alternating nanolayers of dielectric MgF2 and metallic Ag as hyperbolic metamaterials: Probing surface states and optical topological phase transition and implications for sensing applications. ACS Applied Nano Materials, 4, 2211-2217(2021).

    [120] H XU, Z ZHU, J XUE et al. Giant enhancements of high-order upconversion luminescence enabled by multiresonant hyperbolic metamaterials. Photonics Research, 9, 395-404(2021).

    [121] S HU, S DU, J LI et al. Multidimensional image and beam splitter based on hyperbolic metamaterials. Nano Letters, 21, 1792-1799(2021).

    Zhiwei GUO, Haitao JIANG, Hong CHEN. Linear-crossing Metamaterials and Their Applications(Invited)[J]. Acta Photonica Sinica, 2022, 51(1): 0151111
    Download Citation