• Nano-Micro Letters
  • Vol. 17, Issue 1, 050 (2025)
Qingqing Zhou1, Qihang Ding2, Zixun Geng1, Chencheng Hu1..., Long Yang1, Zitong Kan1, Biao Dong1, Miae Won2,3, Hongwei Song1, Lin Xu1,* and Jong Seung Kim2,3,**|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
  • 2Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
  • 3TheranoChem Incorporation, Seoul, 02856, Republic of Korea
  • show less
    DOI: 10.1007/s40820-024-01548-5 Cite this Article
    Qingqing Zhou, Qihang Ding, Zixun Geng, Chencheng Hu, Long Yang, Zitong Kan, Biao Dong, Miae Won, Hongwei Song, Lin Xu, Jong Seung Kim. A Flexible Smart Healthcare Platform Conjugated with Artificial Epidermis Assembled by Three-Dimensionally Conductive MOF Network for Gas and Pressure Sensing[J]. Nano-Micro Letters, 2025, 17(1): 050 Copy Citation Text show less
    References

    [1] H. Xu, W. Zheng, Y. Zhang, D. Zhao, L. Wang et al., A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation. Nat. Commun. 14, 7769 (2023).

    [2] M. Liu, Y. Zhang, J. Wang, N. Qin, H. Yang et al., A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments. Nat. Commun. 13, 79 (2022).

    [3] S. He, J. Dai, D. Wan, S. Sun, X. Yang et al., Biomimetic bimodal haptic perception using triboelectric effect. Sci. Adv. 10, eado6793 (2024).

    [4] Z. Liu, J. Su, K. Zhou, B. Yu, Y. Lin et al., Fully integrated patch based on lamellar porous film assisted GaN optopairs for wireless intelligent respiratory monitoring. Nano Lett. 23, 10674–10681 (2023).

    [5] J. Gao, Y. Fan, Q. Zhang, L. Luo, X. Hu et al., Ultra-robust and extensible fibrous mechanical sensors for wearable smart healthcare. Adv. Mater. 34, e2107511 (2022).

    [6] C. Xu, Y. Song, J.R. Sempionatto, S.A. Solomon, Y. Yu et al., A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. 7, 168–179 (2024).

    [7] X. Liu, X. Ji, R. Zhu, J. Gu, J. Liang, A microphase-separated design toward an all-round ionic hydrogel with discriminable and anti-disturbance multisensory functions. Adv. Mater. 36, e2309508 (2024).

    [8] J. Chen, A. Liu, Y. Shi, Y. Luo, J. Li et al., Skin-inspired bimodal receptors for object recognition and temperature sensing simulation. Adv. Funct. Mater. (2024).

    [9] S. Li, H. Wang, W. Ma, L. Qiu, K. Xia et al., Monitoring blood pressure and cardiac function without positioning via a deep learning-assisted strain sensor array. Sci. Adv. 9, eadh0615 (2023).

    [10] Z. Sun, M. Zhu, X. Shan, C. Lee, Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 13, 5224 (2022).

    [11] S. Wang, W. Deng, T. Yang, Y. Ao, H. Zhang et al., Bioinspired MXene-based piezoresistive sensor with two-stage enhancement for motion capture. Adv. Funct. Mater. 33, 2214503 (2023).

    [12] H. Niu, H. Li, S. Gao, Y. Li, X. Wei et al., Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 34, e2202622 (2022).

    [13] L. Huang, R. Zeng, D. Tang, X. Cao, Bioinspired and multiscale hierarchical design of a pressure sensor with high sensitivity and wide linearity range for high-throughput biodetection. Nano Energy 99, 107376 (2022).

    [14] Y.M. Yuan, B. Liu, M.R. Adibeig, Q. Xue, C. Qin et al., Microstructured polyelectrolyte elastomer-based ionotronic sensors with high sensitivities and excellent stability for artificial skins. Adv. Mater. 36, e2310429 (2024).

    [15] N. Bai, L. Wang, Y. Xue, Y. Wang, X. Hou et al., Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range. ACS Nano 16, 4338–4347 (2022).

    [16] K. Tao, J. Yu, J. Zhang, A. Bao, H. Hu et al., Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin. ACS Nano 17, 16160–16173 (2023).

    [17] M. Zarei, G. Lee, S.G. Lee, K. Cho, Advances in biodegradable electronic skin: material progress and recent applications in sensing, robotics, and human-machine interfaces. Adv. Mater. 35, e2203193 (2023).

    [18] P. Gong, S. Yuan, Z. Yu, T. Xiao, H. Li et al., Long-range epitaxial MOF electronics for continuous monitoring of human breath ammonia. J. Am. Chem. Soc. 146, 4036–4044 (2024).

    [19] S.C. Anenberg, A. Mohegh, D.L. Goldberg, G.H. Kerr, M. Brauer et al., Long-term trends in urban NO2 concentrations and associated paediatric asthma incidence: estimates from global datasets. Lancet Planet. Health 6, e49–e58 (2022).

    [20] C. Chen, G. Xie, J. Dai, W. Li, Y. Cai et al., Integrated core-shell structured smart textiles for active NO2 concentration and pressure monitoring. Nano Energy 116, 108788 (2023).

    [21] Y. Li, R. Wang, G.-E. Wang, S. Feng, W. Shi et al., Mutually noninterfering flexible pressure-temperature dual-modal sensors based on conductive metal-organic framework for electronic skin. ACS Nano 16, 473–484 (2022).

    [22] Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35, e2211642 (2023).

    [23] Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 14, 56 (2022).

    [24] N. Liu, L. Yu, B. Liu, F. Yu, L. Li et al., Ti3C2-MXene partially derived hierarchical 1D/2D TiO2/Ti3C2 heterostructure electrode for high-performance capacitive deionization. Adv. Sci. 10, e2204041 (2023).

    [25] R. Zheng, Z.H. Fu, W.H. Deng, Y. Wen, A.Q. Wu et al., The growth mechanism of a conductive MOF thin film in spray-based layer-by-layer liquid phase epitaxy. Angew. Chem. Int. Ed. 61, e202212797 (2022).

    [26] A. Chae, G. Murali, S.Y. Lee, J. Gwak, S.J. Kim et al., Highly oxidation-resistant and self-healable MXene-based hydrogels for wearable strain sensor. Adv. Funct. Mater. 33, 2370144 (2023).

    [27] H. Roh, D.H. Kim, Y. Cho, Y.M. Jo, J.A. Del Alamo et al., Robust chemiresistive behavior in conductive polymer/MOF composites. Adv. Mater. 36, e2312382 (2024).

    [28] Q. Zhao, W. Zhou, M. Zhang, Y. Wang, Z. Duan et al., Edge-enriched Mo2TiC2Tx/MoS2 heterostructure with coupling interface for selective NO2 monitoring. Adv. Funct. Mater. 32, 2270220 (2022).

    [29] S. Gong, H. Liu, F. Zhao, Y. Zhang, H. Xu et al., Vertically aligned bismuthene nanosheets on MXene for high-performance capacitive deionization. ACS Nano 17, 4843–4853 (2023).

    [30] J. Wu, K. Wang, S. Ye, Q. Zhou, S. Lu et al., One-pot synthesis of conductive metal–organic framework@polypyrrole hybrids with enhanced electromagnetic wave absorption performance. Small Struct. (2024).

    [31] C. Liu, Y. Bai, W. Li, F. Yang, G. Zhang et al., In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew. Chem. Int. Ed. 61, e202116282 (2022).

    [32] G. Wu, S. Sun, X. Zhu, Z. Ma, Y. Zhang et al., Microfluidic fabrication of hierarchical-ordered ZIF-L(Zn)@Ti3C2Tx core-sheath fibers for high-performance asymmetric supercapacitors. Angew. Chem. Int. Ed. 61, e202115559 (2022).

    [33] S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski et al., Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018).

    [34] D.-H. Kim, S. Chong, C. Park, J. Ahn, J.S. Jang et al., Oxide/ZIF-8 hybrid nanofiber yarns: heightened surface activity for exceptional chemiresistive sensing. Adv. Mater. 34, e2105869 (2022).

    [35] H. Cheng, J. Wang, Y. Yang, H. Shi, J. Shi et al., Ti3C2TX MXene modified with ZnTCPP with bacteria capturing capability and enhanced visible light photocatalytic antibacterial activity. Small 18, e2200857 (2022).

    [36] Y. Zhang, Y. Jiang, Z. Duan, Q. Huang, Y. Wu et al., Highly sensitive and selective NO2 sensor of alkalized V2CTx MXene driven by interlayer swelling. Sens. Actuat. B Chem. 344, 130150 (2021).

    [37] W.T. Koo, S.J. Kim, J.S. Jang, D.H. Kim, I.D. Kim, Catalytic metal nanoparticles embedded in conductive metal-organic frameworks for chemiresistors: highly active and conductive porous materials. Adv. Sci. 6, 1900250 (2019).

    [38] P. Chen, X. Su, C. Wang, G. Zhang, T. Zhang et al., Two-dimensional conjugated metal-organic frameworks with large pore apertures and high surface areas for NO2 selective chemiresistive sensing. Angew. Chem. Int. Ed. 62, e202306224 (2023).

    [39] P. Li, H. Zhan, S. Tian, J. Wang, X. Wang et al., Sequential ligand exchange of coordination polymers hybridized with in situ grown and aligned Au nanowires for rapid and selective gas sensing. ACS Appl. Mater. Interfaces 11, 13624–13631 (2019).

    [40] B. Le Ouay, M. Boudot, T. Kitao, T. Yanagida, S. Kitagawa et al., Nanostructuration of PEDOT in porous coordination polymers for tunable porosity and conductivity. J. Am. Chem. Soc. 138, 10088–10091 (2016).

    [41] W.T. Koo, J.H. Cha, J.W. Jung, S.J. Choi, J.S. Jang et al., Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: abundant WS2 edges for highly sensitive gas sensors. Adv. Funct. Mater. 28, 1802575 (2018).

    [42] G. Wu, X. Li, R. Bao, C. Pan, Innovations in tactile sensing: microstructural designs for superior flexible sensor performance. Adv. Funct. Mater. (2024).

    [43] T. Su, N. Liu, D. Lei, L. Wang, Z. Ren et al., Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism. ACS Nano 16, 8461–8471 (2022).

    [44] Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 19, 1143–1150 (2019).

    [45] Z. Xu, D. Wu, Z. Chen, Z. Wang, C. Cao et al., A flexible pressure sensor with highly customizable sensitivity and linearity via positive design of microhierarchical structures with a hyperelastic model. Microsyst. Nanoeng. 9, 5 (2023).

    [46] Y.W. Cai, X.N. Zhang, G.G. Wang, G.Z. Li, D.Q. Zhao et al., A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for E-skin. Nano Energy 81, 105663 (2021).

    [47] J. Shi, L. Wang, Z. Dai, L. Zhao, M. Du et al., Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 14, e1800819 (2018).

    [48] L.-Q. Tao, K.-N. Zhang, H. Tian, Y. Liu, D.-Y. Wang et al., Graphene-paper pressure sensor for detecting human motions. ACS Nano. 11, 8790–8795 (2017).

    [49] P. Lei, Y. Bao, W. Zhang, L. Gao, X. Zhu et al., Synergy of ZnO nanowire arrays and electrospun membrane gradient wrinkles in piezoresistive materials for wide-sensing range and high-sensitivity flexible pressure sensor. Adv. Fiber Mater. 6, 414–429 (2024).

    [50] Y. Zhang, P. Zhu, H. Sun, X. Sun, Y. Ye et al., Superelastic cellulose sub-micron fibers/carbon black aerogel for highly sensitive pressure sensing. Small 20, 2310038 (2024).

    [51] Y. Ma, Z. Li, S. Tu, T. Zhu, W. Xu et al., An asymmetric interlocked structure with modulus gradient for ultrawide piezocapacitive pressure sensing applications. Adv. Funct. Mater. 34, 2309792 (2024).

    [52] R. Qin, J. Nong, K. Wang, Y. Liu, S. Zhou et al., Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 36, 2312761 (2024).

    [53] Y. Kashtan, M. Nicholson, C.J. Finnegan, Z. Ouyang, A. Garg et al., Nitrogen dioxide exposure, health outcomes, and associated demographic disparities due to gas and propane combustion by U.S. stoves. Sci. Adv. 10, 8680 (2024).

    [54] D. Kim, J. Lee, M.K. Park, S.H. Ko, Recent developments in wearable breath sensors for healthcare monitoring. Commun. Mater. 5, 41 (2024).

    Qingqing Zhou, Qihang Ding, Zixun Geng, Chencheng Hu, Long Yang, Zitong Kan, Biao Dong, Miae Won, Hongwei Song, Lin Xu, Jong Seung Kim. A Flexible Smart Healthcare Platform Conjugated with Artificial Epidermis Assembled by Three-Dimensionally Conductive MOF Network for Gas and Pressure Sensing[J]. Nano-Micro Letters, 2025, 17(1): 050
    Download Citation