• Chinese Journal of Lasers
  • Vol. 45, Issue 5, 503001 (2018)
Chen Zinan, Wang Dengkui*, Wei Zhipeng, Fang Xuan, Fang Dan, Wang Xinwei, and Wang Xiaohua
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0503001 Cite this Article Set citation alerts
    Chen Zinan, Wang Dengkui, Wei Zhipeng, Fang Xuan, Fang Dan, Wang Xinwei, Wang Xiaohua. Research on Reducement of AZO Surface Plasma Loss Based on Composition Adjustment[J]. Chinese Journal of Lasers, 2018, 45(5): 503001 Copy Citation Text show less
    References

    [1] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000). http://www.tandfonline.com/servlet/linkout?suffix=cit0148&dbid=8&doi=10.1080%2F05704928.2017.1323309&key=11041972

    [2] Bozhevolnyi S I, Volkov V S, Devaux E et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 440, 508-511(2006). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000013000013000049000001&idtype=cvips&gifs=Yes

    [3] Ozbay E. Plasmonics: Merging photonics and electronics at nanoscale dimensions[J]. Science, 311, 189-193(2006). http://www.ncbi.nlm.nih.gov/pubmed/16410515/

    [4] Alu A, Engheta N. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas[J]. Physical Review Letters, 101, 043901(2008). http://europepmc.org/abstract/MED/18764328

    [5] Lee B, Liu W, Naylor C H et al. Electrical tuning of exciton-plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice[J]. Nano Letters, 17, 4541-4545(2017). http://pubs.acs.org/doi/full/10.1021/acs.nanolett.7b02245

    [6] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 312, 1780-1782(2006).

    [7] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006). http://europepmc.org/abstract/MED/17053110

    [8] Johnson A D, Cheng F, Tsai Y et al. Giant enhancement of defect bound exciton luminescence and suppression of band edge luminescence in monolayer WSe2-Ag plasmonic hybrid structures[J]. Nano Letters, 17, 4317-4322(2017). http://europepmc.org/abstract/MED/28564544

    [9] Tian H, Fan H, Li M et al. Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor[J]. ACS Sensors, 1, 243-250(2015). http://pubs.acs.org/doi/abs/10.1021/acssensors.5b00236

    [10] Liu Q, Zhou L, Zhou Y. Phase shift of optical fiber sensor coated with ZnO based on hybrid particle swarm optimization algorithm[J]. Acta Optica Sinica, 37, 0122002(2017).

    [11] Cai Y, Fan H, Xu M et al. Rapid photocatalytic activity and honeycomb Ag/ZnO heterostructures via solution combustion synthesis[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 787-795(2013). http://www.sciencedirect.com/science/article/pii/S0927775713006109

    [12] Fang J, Fan H, Tian H et al. Morphology control of ZnO nanostructures for high efficient dye-sensitized solar cells[J]. Materials Characterization, 108, 51-57(2015). http://www.sciencedirect.com/science/article/pii/S104458031500306X

    [13] Guo K, Yu Y, Song B B et al. Fabrication and opto-electronic properties of Zno/Ag/Zno composite films at room temperature[J]. Laser & Optoelectronics Progress, 54, 103102(2017).

    [14] Liu C L, Dou Y, Chen C et al. Performance of oxygen passivation silicon-based ZnO/nanoporous Si pillar array heterojunction near white light LED[J]. Laser & Optoelectronics Progress, 53, 112302(2016).

    [15] Lin S L. Study of composite window layer of thin film solar cells[D]. Fuzhou: Fuzhou University(2014).

    [16] Wang X. Optical and electronic study of aluminum-doped zinc oxide thin films prepared by atomic layer deposition method[D]. Changchun: Changchun University of Science and Technology(2014).

    [17] Xu T T, Li Y, Chen P Z et al. Infrared modulator based on AZO/VO2/AZO sandwiched structure due to electric field induced phase transition[J]. Acta Physica Sinica, 65, 248102(2016).

    [18] Naik G V, Bolatasseva A. A comparative study of semiconductor-based plasmonic metamaterials[J]. Metamaterials, 5, 1-7(2011). http://www.sciencedirect.com/science/article/pii/S1873198810000538

    [19] Calzolari A, Ruini A, Catellani A. Transparent conductive oxides as near-IR plasmonic materials: The case of Al-doped ZnO derivatives[J]. ACS Photonics, 1, 703-709(2014). http://pubs.acs.org/doi/abs/10.1021/ph500118y

    [20] Lin J Y, Zhong K D, Lee P T. Plasmonic behaviors of metallic AZO thin film and AZO nanodisk array[J]. Optics Express, 24, 5125-5135(2016). http://www.ncbi.nlm.nih.gov/pubmed/29092340

    [21] Pradhan A K, Mundle R M, Santiago K et al. Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications[J]. Scientific Reports, 4, 6415-6421(2014). http://europepmc.org/articles/PMC4166945

    [22] Noginov M A, Zhu G, Bahoura M et al. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium[J]. Optics Letters, 31, 3022-3024(2006). http://www.ncbi.nlm.nih.gov/pubmed/17001387?dopt=Abstract

    [23] Naik G V, Liu J, Kildishev A V et al. Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials[J]. Proceedings of the National Academy of Sciences, 109, 8834-8838(2012). http://www.ncbi.nlm.nih.gov/pubmed/22611188

    [24] Yang Y, Miller O D, Christensen T et al. Low-loss plasmonic dielectric nanoresonators[J]. Nano Letters, 17, 3238-3245(2017). http://europepmc.org/abstract/MED/28441499

    [25] Bobb D A, Zhu G, Mayy M et al. Engineering of low-loss metal for nanoplasmonic and metamaterials applications[J]. Applied Physics Letters, 95, 151102(2009). http://scitation.aip.org/content/aip/journal/apl/95/15/10.1063/1.3237179

    [26] Blaber M G, Arnold M D, Ford M J. Optical properties of intermetallic compounds from first principles calculations: A search for the ideal plasmonic material[J]. Journal of Physics: Condensed Matter, 21, 1118-1129(2009). http://europepmc.org/abstract/MED/21825328

    [27] Yu Y S, Kim G Y, Min B H et al. Optical characteristics of Ge doped ZnO compound[J]. Journal of the European Ceramic Society, 24, 1865-1868(2004). http://www.sciencedirect.com/science/article/pii/S095522190300596X

    [28] Musat V, Teixeira B, Fortunato E et al. Al-doped ZnO thin films by sol-gel method[J]. Surface and Coatings Technology, 180, 659-662(2004). http://www.sciencedirect.com/science/article/pii/S025789720301274X

    [29] West P R, Ishii S, Naik G V et al. Searching for better plasmonic materials[J]. Laser & Photonics Reviews, 4, 795-808(2010). http://onlinelibrary.wiley.com/doi/10.1002/lpor.200900055/full

    [30] Yang Y, Chen J. Optical band gap blue shift and Stokes shift in Al-doped ZnO nanorods by electrodeposition[J]. Chinese Journal of Luminescence, 35, 1165-1171(2014).

    [31] Lee D J, Kwon J Y, Kim S H et al. Effect of Al distribution on carrier generation of atomic layer deposited Al-doped ZnO films[J]. Journal of The Electrochemical Society, 158, D277-D281(2011). http://www.researchgate.net/publication/270605242_effect_of_al_distribution_on_carrier_generation_of_atomic_layer_deposited_al-doped_zno_films

    [32] Banerjee P, Lee W J, Bae K R et al. Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films[J]. Journal of Applied Physics, 108, 043504(2010). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5574950

    [33] Lin J P, Wu J M. The effect of annealing processes on electronic properties of sol-gel derived Al-doped ZnO films[J]. Applied Physics Letters, 92, 134103(2008). http://scitation.aip.org/content/aip/journal/apl/92/13/10.1063/1.2905279

    Chen Zinan, Wang Dengkui, Wei Zhipeng, Fang Xuan, Fang Dan, Wang Xinwei, Wang Xiaohua. Research on Reducement of AZO Surface Plasma Loss Based on Composition Adjustment[J]. Chinese Journal of Lasers, 2018, 45(5): 503001
    Download Citation