[1] BüCHEL G, LIU Xinyu, BUHR A, et al. Review of tabular alumina as high performance refractory material[J]. Interceram Refract Manual, 2007: 6-12.
[2] LEE W E, MOORE R E. Evolution of in situ refractories in the 20th century[J]. J Am Ceram Soc, 1998, 81(6): 1385-1410.
[3] SCHNABEL M, BUHR A, SCHMIDTMEIER D, et al. Perceptions and characteristics of fused and sintered refractory aggregates[J]. Refract Worldforum, 2015, 7: 75-81.
[4] SCHAFFóNER S, DIETZE C, M.HMEL S, et al. Refractories containing fused and sintered alumina aggregates: investigations on processing, particle size distribution and particle morphology[J]. Ceram Int, 2017, 43(5): 4252-4262.
[6] SANTOSA H S, CAMPOSA T W, SANTOSB P S, et al. Thermal phase sequences in gibbsite/kaolinite clay: Electron microscopy studies[J]. Ceram Int, 2005, 31(8): 1077-1084.
[7] DAMERELL V R, HOVORKA F, WHITE W E. Surface Chemistry of Hydrates II. Decomposition without Lattice Rearrangements[J]. J Phys Chem C, 2002, 36(4): 1255-1267.
[9] DANA J D, DANA R V, DANA E S. Dana.s New Mineralogy[M]. New York: John Wiley & Sons, 1997.
[10] LIU Ye, MA Ding, BLACKLEY R A, et al. Synthesis and characterization of gibbsite nanostructures[J]. J Phys Chem C, 2008, 112(11): 4124-4128.
[11] ACHENBACH H. Thermal decomposition of synthetic hydrargillite (Gibbsite)[J]. Chem Erde-Geochem, 1931, 6: 307-356.
[12] KLEIN C, JR. HURLBUT C. Mconual of Mineralogy[M]. New York: John Wiley & Sons, 1993.
[13] MA Jiuhong, ZHAO Huizhong, ZHANG Han, et al. The role of pseudomorphic structure in sintering process[J]. Mater Lett, 2021, 301(6): 130307.
[14] MA Jiuhong, ZHAO Huizhong, YU Jun, et al. Preparation of tabular corundum aggregate from different sources alumina raw powder: Sintering kinetics and establishment of kinetics model[J]. Ceram Int, 2022, 48(12): 16544-16553.
[15] SANDHAGE K H, YUREK G J. Indirect dissolution of sapphire into calcia-magnesia-alumina-silica melts: Electron microprobe analysis of the dissolution process[J]. J Am Ceram Soc, 1990, 73(12): 3643-3649.
[16] SANDHAGE K H, YUREK G J. Direct and indirect dissolution of sapphire in calcia-magnesia-alumina-silica melts: Dissolution kinetics[J]. J Am Ceram Soc, 1990, 73(12): 3633-3642.
[17] SARPOOLAKY H, ZHANG Shaowei, LEE W E. Corrosion of high alumina and near stoichiometric spinels in iron-containing silicate slags[J]. J Eur Ceram Soc, 2003, 23(2): 293-300.
[18] MUKAI K, MATSUSHITA T, LI Zushu. Direct observation of interfacial phenomena, such as local corrosion, slag and metal penetration into refractories, using a high temperature X-ray radiographic technique[J]. Adv Sci Technol, 2003, 35: 23-34.
[19] OISHI Y, COOPER A R, KINGERY W D. Dissolution in ceramic systems: III, boundary layer concentration gradients[J]. J Am Ceram Soc, 1965, 48(2): 88-95.
[20] FU Lvping, HUANG Ao, LIAN Pengfei, et al. Isolation or corrosion of microporous alumina in contact with various CaO-Al2O3-SiO2 slags[J]. Corros Sci, 2017, 120: 211-218.
[21] MA Jiuhong, ZHAO Huizhong, YU Jun, et al. The critical role of aggregate microstructure in thermal shock resistance and slag resistance of Al2O3-SiC-C castable[J]. Ceram Int, 2022, 48(8): 11644-11653.
[22] MA Jiuhong, ZHAO Huizhong, LI Yichong, et al. Erosion mechanism of tabular alumina of various microstructures under different basicity of blast furnace slag[J]. Ceram Int, 2022, 48(14): 20409-20417.
[23] GUHA K H. Reaction chemistry in dissolution of polycrystalline alumina in lime-alumina-silica slag[J]. Trans Br Ceram Soc, 1997, 96(6): 231-236.