[3] Bhatt P M , Malhan R K , Rajendran P , et al. Image-based surface defect detection using deep learning : A review[J] . Journal of Computing and Information Science in Engineer- ing , 2021 , 21(4) :040801.
[4] Mohanapriya S , Natesan P , Sumithra P , et al. Instance Segmentation using Mask RCNN for Surveillance [ C ]// 2022 6th International Conference on Computing Methodolo- gies and Communication ( ICCMC ) . IEEE , 2022 : 235 - 241.
[5] Ronneberger O , Fischer P , Brox T. U-net : Convolutional networks for biomedical image segmentation [ C]//Interna- tional Conference on Medical image computing and comput- er - assisted intervention. Springer , Cham , 2015 : 234 - 241.
[6] Zhang Y , Song C , Zhang D. Small-scale aircraft detection in remote sensing images based on Faster-RCNN[J] . Mul-timedia Tools and Applications , 2022 , 81 ( 13) : 18091 - 18103.
[7] Wang Y , Wang N , Tang L , et al. Marine Vessel Detection in Sea Fog Environment Based on SSD [ C]//International Conference on Sensor Systems and Software. Cham : Spring- er Nature Switzerland , 2022 : 49-62.
[8] J K Park , B K Kwon , J H Park , et al. Machine learning- based imaging system for surface defect inspection[J] . In- ternational Journal of Precision Engineering and Manufac- turing-Green Technology , 2016 , 3(3) : 303-310.
[14] Peng X , Ma Z , Wang P , et al. Research on Helmet Detec- tion Algorithm Based on Improved YOLOv5s[ C]//Interna- tional Conference on Artificial Intelligence in China. Singa- pore : Springer Nature Singapore , 2022 : 95- 102.
[15] Lin T Y , Dollár P , Girshick R , et al. Feature pyramid net- works for object detection [ C] //Proceedings of the IEEE Conference on Computer Vision. Los Alamitos : IEEE Com- puter Society Press , 2017 : 936-944.
[16] Liu S , Qi L , Qin H , et al. Path aggregation network for in- stance segmentation[ C]//Proceedings of the IEEE confer- ence on computer vision and pattern recognition. 2018 : 8759- 8768.
[17] Ge Z , Liu S , Wang F , et al. Yolox : Exceeding yolo series in 2021[J] . arXiv preprint arXiv:2107. 08430 , 2021.
[18] Wang C Y , Bochkovskiy A , Liao H Y M. YOLOv7 : Train- able bag-of-freebies sets new state - of- the - art for real - time object detectors [ C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023 : 7464-7475.