• Opto-Electronic Engineering
  • Vol. 45, Issue 8, 180126 (2018)
Wang Ke1、2, Chen Xiaomei1、2, and Han Xu3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2018.180126 Cite this Article
    Wang Ke, Chen Xiaomei, Han Xu. Research on pose measurement between two non-cooperative spacecrafts in close range based on concentric circles[J]. Opto-Electronic Engineering, 2018, 45(8): 180126 Copy Citation Text show less

    Abstract

    Conventional measurement of relative poses between two non-cooperative spacecrafts in close range is derived from the iteration of monocular vision or three-dimensional reconstruction of binocular vision, which introduces errors in the process of feature matching, and the timeliness and accuracy are poor. Regarding the issues above, this article tries to do some researches on measurement of relative poses between two non-cooperative spacecrafts in close range based on concentric circles. Here, ‘concentric circles’ means the spatial parallel but not coplanar positional relationship between docking ring and engine nozzle. Through the binocular vision measurement model, the angle adaptability and the applicability are improved. Then, the algorithm of this model is simulated, and the simulated results show that the accuracy of the algorithm can reach higher than 0.5°.
    Wang Ke, Chen Xiaomei, Han Xu. Research on pose measurement between two non-cooperative spacecrafts in close range based on concentric circles[J]. Opto-Electronic Engineering, 2018, 45(8): 180126
    Download Citation