• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 18, Issue 3, 435 (2020)
SHI Lei, HUANG Kama, and YANG Yang*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11805/tkyda2019461 Cite this Article
    SHI Lei, HUANG Kama, YANG Yang. Simulation of magnetic resonance wireless power transfer system in non-ferromagnetic medium[J]. Journal of Terahertz Science and Electronic Information Technology , 2020, 18(3): 435 Copy Citation Text show less
    References

    [1] KURS A,KARALIS A,MOFFATT R,et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007,317(83):83-86.

         KURS A,KARALIS A,MOFFATT R,et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007,317(83):83-86.

    [2] MOMENEH A,CASTILLA M,MORADI Ghahderijani M,et al. Analysis, design and implementation of a residential inductive contactless energy transfer system with multiple mobile clamps[J]. IET Power Electron, 2017,10(8):875–883.

         MOMENEH A,CASTILLA M,MORADI Ghahderijani M,et al. Analysis, design and implementation of a residential inductive contactless energy transfer system with multiple mobile clamps[J]. IET Power Electron, 2017,10(8):875–883.

    [3] WU R,LI W,LUO H,et a. Design and characterization of wireless power links for brain-machine interface applications[J]. IEEE Transactions on Power Electronics, 2014,29(10):5462–5471.

         WU R,LI W,LUO H,et a. Design and characterization of wireless power links for brain-machine interface applications[J]. IEEE Transactions on Power Electronics, 2014,29(10):5462–5471.

    [4] SAMPLE A P,MEYER D A,SMITH J R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2011,58(2):544–554.

         SAMPLE A P,MEYER D A,SMITH J R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2011,58(2):544–554.

    [5] DUONG T P,LEE J W. Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method[J]. IEEE Microwave and Wireless Components Letters, 2011,21(8):442–444.

         DUONG T P,LEE J W. Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method[J]. IEEE Microwave and Wireless Components Letters, 2011,21(8):442–444.

    [6] LEE G,WATERS B H,SHIN Y G,et al. A reconfigurable resonant coil for range adaptation wireless power transfer[J]. IEEE Transactions on Microwave Theory and Techniques, 2016,64(2):1-9.

         LEE G,WATERS B H,SHIN Y G,et al. A reconfigurable resonant coil for range adaptation wireless power transfer[J]. IEEE Transactions on Microwave Theory and Techniques, 2016,64(2):1-9.

    [9] REZA K S,CHOI G S. Optimization of planar strongly coupled wireless power transfer system for biomedical applications[J]. Microwave and Optical Technology Letters, 2016,58(8):1861-1866.

         REZA K S,CHOI G S. Optimization of planar strongly coupled wireless power transfer system for biomedical applications[J]. Microwave and Optical Technology Letters, 2016,58(8):1861-1866.

    [10] OREKAN T,ZHANG P,SHIH C. Analysis, design, and maximum power-efficiency tracking for undersea wireless power transfer[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017,6(2):843-854.

         OREKAN T,ZHANG P,SHIH C. Analysis, design, and maximum power-efficiency tracking for undersea wireless power transfer[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017,6(2):843-854.

    [11] RONG C,LU C,HU Z,et al. Analysis of wireless power transfer based on metamaterial using equivalent circuit[J]. The Journal of Engineering, 2019(16):2032-2035.

         RONG C,LU C,HU Z,et al. Analysis of wireless power transfer based on metamaterial using equivalent circuit[J]. The Journal of Engineering, 2019(16):2032-2035.

    [12] BENNING C. Impedance of a loop antenna in a conducting medium[J]. IEEE Transactions on Antennas and Propagation, 1966,14(2):242-243.

         BENNING C. Impedance of a loop antenna in a conducting medium[J]. IEEE Transactions on Antennas and Propagation, 1966,14(2):242-243.

    [15] NIU W,GU W,CHU J. Analysis and experimental results of frequency splitting of underwater wireless power transfer[J]. The Journal of Engineering, 2017(7):385-390.

         NIU W,GU W,CHU J. Analysis and experimental results of frequency splitting of underwater wireless power transfer[J]. The Journal of Engineering, 2017(7):385-390.

    [16] KRAICHMAN M B. Impedance of a circular loop in an infinite conducting medium[J]. Journal of Research of the National Bureau of Standards D:Radio Propagation, 1962,66(4):499-503.

         KRAICHMAN M B. Impedance of a circular loop in an infinite conducting medium[J]. Journal of Research of the National Bureau of Standards D:Radio Propagation, 1962,66(4):499-503.

    SHI Lei, HUANG Kama, YANG Yang. Simulation of magnetic resonance wireless power transfer system in non-ferromagnetic medium[J]. Journal of Terahertz Science and Electronic Information Technology , 2020, 18(3): 435
    Download Citation