• Journal of Advanced Dielectrics
  • Vol. 13, Issue 1, 2242009 (2023)
Xiangting Zheng1, Wentao Zhong1, Peng Zheng1、*, Wangfeng Bai2, Chong Luo2, Liang Zheng1, and Yang Zhang1
Author Affiliations
  • 1Lab for Nanoelectronics and NanoDevices, Department of Electronics Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
  • 2College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
  • show less
    DOI: 10.1142/S2010135X22420097 Cite this Article
    Xiangting Zheng, Wentao Zhong, Peng Zheng, Wangfeng Bai, Chong Luo, Liang Zheng, Yang Zhang. A novel Sr5BiTi3Nb7O30 tungsten bronze ceramic with high energy density and efficiency for dielectric capacitor applications[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242009 Copy Citation Text show less
    References

    [1] Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, U. Li, E. Iagodkine, A. Haque, L. Q. Chen, N. Jackson, Q. Wang. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 523, 576(2015).

    [2] C. W. Ahn, C. H. Hong, B. Y. Choi, H. P. Kim, H. S. Han, Y. H. Hwang, W. Jo, K. Wang, J. F. Li, J. S. Lee, Ill. W. Kim. A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors. J. Korean Phys. Soc., 68, 1481(2016).

    [3] G. Liu, Y. Li, B. Guo, M. Y. Tang, Q. Li, J. Dong, L. J. Yu, K. Yu, Y. Yan, D. W. Wang, L. Y. Zhang, H. B. Zhang, Z. B. He, L. Jin. Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chem. Eng. J., 398(2020).

    [4] L. T. Yang, X. Kong, F. Li, H. Hao, Z. X. Cheng, H. X. Liu, J. F. Li, S. J. Zhang. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci., 102, 72(2019).

    [5] Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M. T. Lanagan, H. Liu. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater., 29(2017).

    [6] Q. Li, F. Z. Yao, Y. Liu, G. Z. Zhang, H. Wang, Q. Wang. High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Sci., 48, 219(2018).

    [7] Z. T. Yang, F. Gao, H. L. Du, L. Jin, L. L. Yan, Q. Y. Hu, Y. Yu, S. B. Qu, X. Y. Wei, Z. Xu, Y. J. Wang. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy, 58, 768(2019).

    [8] T. D. Zhang, W. L. Li, Y. Zhao, Y. Yu, W. D. Fei. High energy storage performance of opposite double-heterojunction ferroelectricity-insulators. Adv. Funct. Mater., 28(2018).

    [9] F. Li, M. X. Zhou, J. W. Zhai, B. Shen, H. R. Zeng. Novel barium titanate based ferroelectric relaxor ceramics with superior charge–discharge performance. J. Eur. Ceram. Soc., 38, 4646(2018).

    [10] W. B. Li, D. Zhou, L. X. Pang, R. Xu, H. H. Guo. Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chem. A, 5, 19607(2017).

    [11] M. Wei, J. H. Zhang, K. T. Wu, H. W. Chen, C. R. Yang. Effect of BiMO3 (M=Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3ceramics. Ceram. Int., 43, 9593(2017).

    [12] L. W. Wu, X. H. Wang, L. T. Li. Lead-free BaTiO3-Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage. RSC Adv., 6, 14273(2016).

    [13] M. X. Zhou, R. H. Liang, Z. Y. Zhou, X. L. Dong. Combining high energy efficiency and fast charge–discharge capability in novel BaTiO3-based relaxor ferroelectric ceramic for energy-storage. Ceram. Int., 45, 3582(2019).

    [14] P. Jaita, P. Jarupoom, R. Yimnirun, G. Rujijanagul, D. P. Cann. Phase transition and tolerance factor relationship of lead-free (Bi0.5K0.5)TiO3-Bi(Mg0.5Ti0.5)O3 piezoelectric ceramics. Ceram. Int., 42, 15940(2016).

    [15] Z. Pan, Q. Wang, J. Chen, C. Liu, L. L. Fan, L. J. Liu, L. Fang, X. R. Xing, D. Viehland. Enhanced piezoelectric properties of tetragonal (Bi1/2K1/2)TiO3 lead-free ceramics by substitution of pure Bi-based Bi(Mg2/3Nb1/3)O3. J. Am. Ceram. Soc., 98, 104(2015).

    [16] M. Shiga, M. Hagiwara, S. Fujihara. (Bi1/2K1/2)TiO3-SrTiO3 solid-solution ceramics for high-temperature capacitor applications. Ceram. Int., 46, 10242(2020).

    [17] L. Zheng, Z. A. Niu, P. Zheng, K. Zhang, C. Luo, J. J. Zhang, N. N. Wang, W. F. Bai, Y. Zhang. Simultaneously achieving high energy storage performance and remarkable thermal stability in Bi0.5K0.5TiO3-based ceramics. Mater. Today Energy, 28(2022).

    [18] Z. A. Niu, P. Zheng, Y. M. Xiao, C. Luo, K. Zhang, J. J. Zhang, L. Zheng, Y. Zhang, W. F. Bai. Simultaneously achieving high energy storage performance and remarkable thermal stability in Bi˙0.5K0.5TiO3-based ceramics. Mater. Today Chem., 24(2022).

    [19] Y. H. Wan, L. Tang, X. Y. Dang, P. R. Ren, M. Ma, K. X. Song, G. Y. Zhao. High temperature dielectrics based on Bi1/2Na1/2TiO3-BaTiO3-Sr0.53Ba0.47Nb2O6 ceramics with high dielectric permittivity and wide operational temperature range. Ceram. Int., 45, 2596(2019).

    [20] F. Yan, K. W. Huang, T. Jiang, X. F. Zhou, Y. J. Shi, G. L. Ge, B. Shen, J. W. Zhai. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Stor. Mater., 30, 392(2020).

    [21] X. Y. Zhao, W. F. Bai, Y. Q. Ding, L. J. Wang, S. T. Wu, P. Zheng, P. Li, J. W. Zhai. Enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. J. Eur. Ceram. Soc., 40, 4475(2020).

    [22] Y. Q. Ding, J. K. Liu, C. Y. Li, W. F. Bai, S. T. Wu, P. Zheng, J. J. Zhang, J. W. Zhai. Tailoring high energy density with superior stability under low electric field in novel (Bi0.5Na0.5)TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J., 426(2021).

    [23] X. Zhang, D. Hu, Z. B. Pan, X. J. Lv, Z. Y. He, F. Yang, P. Li, J. J. Liu, J. W. Zhai. High capacitive performance at moderate operating field in (Bi0.5Na0.5)TiO3-based dielectric ceramics via synergistic effect of site engineering strategy. Chem. Eng. J., 406(2021).

    [24] C. W. Cui, Y. P. Pu, Z. Y. Gao, J. Wan, Y. S. Guo, C. Y. Hui, Y. R. Wang, Y. F. Cui. Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications. J. Alloys Compd., 711, 319(2017).

    [25] A. Jan, H. X. Liu, H. Hao, Z. H. Yao, M. Emmanuel, W. G. Pan, A. Ullah, A. Manan, A. Ullah, M. H. Cao, A. S. Ahmad. Enhanced dielectric breakdown strength and ultra-fast discharge performance of novel SrTiO3 based ceramics system. J. Alloys Compd., 830(2020).

    [26] J. Xie, H. Hao, H. X. Liu, Z. H. Yao, Z. Song, L. Zhang, Q. Xu, J. Q. Dai, M. H. Cao. Dielectric relaxation behavior and energy storage properties of Sn modified SrTiO3 based ceramics. Ceram. Int., 42, 12796(2016).

    [27] H. B. Yang, F. Yan, Y. Lin, T. Wang. Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustain. Chem. Eng., 5, 10215(2017).

    [28] H. B. Yang, F. Yan, Y. Lin, T. Wang. Improvement of dielectric and energy storage properties in SrTiO3 -based lead-free ceramics. J. Alloys Compd., 728, 780(2017).

    [29] N. N. Luo, K. Han, M. J. Cabral, X. Z. Liao, S. J. Zhang, C. Z. Liao, G. Z. Zhang, X. Y. Chen, Q. Feng, J. F. Li, Y. Z. Wei. Constructing phase boundary in AgNbO3 antiferroelectrics: Pathway simultaneously achieving high energy density and efficiency. Nat. Commun., 11, 4824(2020).

    [30] Z. L. Lu, W. C. Bao, G. Wang, S. K. Sun, L. H. Li, J. L. Li, H. J. Yang, H. F. Ji, A. Feteira, D. J. Li, F. F. Xu, A. K. Kleppe, D. W. Wang, S. Y. Liu, I. M. Reaney. Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics. Nano Energy., 79, 105423(2021).

    [31] W. W. Yang, H. R. Zeng, F. Yan, J. F. Lin, G. L. Ge, Y. B. Cao, W. T. Du, K. Y. Zhao, G. R. Li, H. J. Xie, J. W. Zhai. Superior energy storage properties in NaNbO3-based ceramicsvia synergistically optimizing domain and band structures. J. Mater. Chem. A, 10, 11613(2022).

    [32] H. Qi, R. Z. Zuo, A. W. Xie, A. Tian, J. Fu, Y. Zhang, S. J. Zhang. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv. Funct. Mater., 29, 1903877(2019).

    [33] L. Cao, Y. Yuan, X. Meng, E. Li, B. Tang. Ferroelectric-relaxor crossover and energy storage properties in Sr2NaNb5O15-based tungsten bronze ceramics. ACS Appl. Mater. Interfaces, 14, 9318(2022).

    [34] X. Z. Zhang, W. B. Ye, X. Y. Bu, P. Zheng, L. L. Li, F. Wen, W. F. Bai, L. Zheng, Y. Zhang. Remarkable capacitive performance in novel tungsten bronze ceramics. Dalton Trans., 50, 124(2021).

    [35] X. L. Zhu, X. M. Chen, X. Q. Liu, X. G. Li. Ferroelectric phase transition and low-temperature structure fluctuations in Ba4Nd2Ti4Nb6O30 tungsten bronze ceramics. J. Appl. Phys., 105, 6(2009).

    [36] H. Pan, J. Ma, J. Ma, Q. Zhang, X. Liu, B. Guan, L. Gu, X. Zhang, Y. J. Zhang, L. Li, Y. Shen, Y. H. Lin, C. W. Nan. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun., 9, 1813(2018).

    [37] F. Li, X. Hou, T. Y. Li, R. J. Si, C. C. Wang, J. W. Zhai. Fine-grain induced outstanding energy storage performance in novel Bi0.5K0.5TiO3-Ba(Mg1/3Nb2/3)O3 ceramics via a hot-pressing strategy. J. Mater. Chem. C, 7, 12127(2019).

    [38] L. Zheng, P. C. Sun, P. Zheng, W. F. Bai, L. L. Li, F. Wen, J. J. Zhang, N. N. Wang, Y. Zhang. Significantly tailored energy-storage performances in Bi0.5Na0.5TiO3-SrTiO3 -based relaxor ferroelectric ceramics by introducing bismuth layer-structured relaxor BaBi2Nb2O9 for capacitor application. J. Mater. Chem. C, 9, 5234(2021).

    [39] D. Li, Y. Lin, Q. B. Yuan, M. Zhang, L. Ma, H. B. Yang. A novel lead-free Na0.5Bi0.5TiO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications. J. Materiomics, 6, 743(2020).

    [40] F. Li, J. W. Zhai, B. Shen, X. Liu, H. R. Zeng. Simultaneously high-energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.20.1)TiO3 ergodic relaxor ceramics. Mater. Res. Lett., 6, 345(2018).

    [41] H. Qi, A. W. Xie, A. Tian, R. Z. Zuo. Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3 -BaTiO3-NaNbO3 lead-free bulk ferroelectrics. Adv. Energy Mater., 10(2019).

    [42] J. P. Shi, X. L. Chen, X. Li, J. Sun, C. C. Sun, F. H. Pang, H. F. Zhou. Realizing ultrahigh recoverable energy density and superior charge–discharge performance in NaNbO3-based lead-free ceramics via a local random field strategy. J. Mater. Chem. C, 8, 3784(2020).

    [43] J. K. Liu, P. Li, C. Y. Li, W. F. Bai, S. T. Wu, P. Zheng, J. J. Zhang, J. W. Zhai. Synergy of a stabilized antiferroelectric phase and domain engineering boosting the energy storage performance of NaNbO3-based relaxor antiferroelectric ceramics. ACS Appl. Mater. Interfaces, 14, 17662(2022).

    [44] Z. H. Dai, J. L. Xie, W. G. Liu, X. Wang, L. Zhang, Z. J. Zhou, J. L. Li, X. B. Ren. Effective strategy to achieve excellent energy storage properties in lead-free BaTiO3-based bulk ceramics. ACS Appl. Mater. Interfaces, 12, 30289(2020).

    [45] X. Y. Dong, X. Li, X. L. Chen, J. G. Wu, H. F. Zhou. Simultaneous enhancement of polarization and breakdown strength in lead-free BaTiO3-based ceramics. Chem. Eng. J., 409(2021).

    [46] F. H. Pang, X. L. Chen, C. C. Sun, J. P. Shi, X. Li, H. Y. Chen, X. Y. Dong, H. F. Zhou. Ultrahigh energy storage characteristics of sodium niobate-based ceramics by introducing a local random field. ACS Sustain. Chem. Eng., 8, 14985(2020).

    [47] P. Shi, X. P. Zhu, X. J. Lou, B. Yang, Q. D. Liu, C. C. Kong, S. Yang, L. Q. He, R. R. Kang, J. T. Zhao. Tailoring ferroelectric polarization and relaxation of BNT-based lead-free relaxors for superior energy storage properties. Chem. Eng. J., 428(2022).

    [48] W. J. Shi, Y. L. Yang, L. Y. Zhang, R. Y. Jing, Q. Y. Hu, D. O. Alikin, V. Ya Shur, J. H. Gao, X. Y. Wei, L. Jin. Enhanced energy storage performance of eco-friendly BNT-based relaxor ferroelectric ceramics via polarization mismatch-reestablishment and viscous polymer process. Ceram. Int., 48, 6512(2022).

    [49] F. Si, B. Tang, Z. X. Fang, H. Li, S. R. Zhang. A new type of BaTiO3-based ceramics with Bi(Mg1/2Sn1/2)O3 modification showing improved energy storage properties and pulsed discharging performances. J. Alloys Compd., 819(2020).

    [50] C. C. Sun, X. L. Chen, J. P. Shi, F. H. Pang, X. Y. Dong, H. Y. Chen, K. G. Wang, X. J. Zhou, H. F. Zhou. Simultaneously with large energy density and high efficiency achieved in NaNbO3-based relaxor ferroelectric ceramics. J. Eur. Ceram. Soc., 41, 1891(2021).

    [51] H. L. Wang, X. Y. Bu, X. Z. Zhang, P. Zheng, L. L. Li, F. Wen, W. F. Bai, J. J. Zhang, L. Zheng, Y. Zhang. Pb/Bi-free tungsten bronze-based relaxor ferroelectric ceramics with remarkable energy storage performance. ACS Appl. Energy Mater., 4, 9066(2021).

    [52] T. Wei, K. Liu, P. Y. Fan, D. J. Lu, B. H. Ye, C. R. Zhou, H. B. Yang, H. Tan, D. Salamon, B. Nan, H. B. Zhang. Novel NaNbO3-Sr0.7Bi0.2TiO3 lead-free dielectric ceramics with excellent energy storage properties. Ceram. Int., 47, 3713(2021).

    [53] F. Yang, Z. B. Pan, Z. Q. Ling, D. Hu, J. Ding, P. Li, J. J. Liu, J. W. Zhai. Realizing high comprehensive energy storage performances of BNT-based ceramics for application in pulse power capacitors. J. Eur. Ceram. Soc., 41, 2548(2021).

    [54] J. M. Ye, G. S. Wang, M. X. Zhou, N. T. Liu, X. F. Chen, S. Li, F. Cao, X. L. Dong. Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications. J. Mater. Chem. C, 7, 5639(2019).

    [55] X. Z. Zhang, H. L. Wang, X. Y. Bu, P. Zheng, L. L. Li, F. Wen, W. F. Bai, J. J. Zhang, L. Zheng, J. W. Zhai, Y. Zhang. Simultaneously realizing superior energy storage properties and outstanding charge-discharge performances in tungsten bronze-based ceramic for capacitor applications. Inorg.Chem., 60, 6559(2021).

    [56] X. Z. Zhang, P. Zheng, L. Li, F. Wen, W. F. Bai, J. J. Zhang, L. Zheng, Y. Zhang. High energy storage performance in tungsten bronze-based relaxor ceramic via doping with CuO. Scr. Mater., 211(2022).

    [57] M. X. Zhou, R. H. Liang, Z. Y. Zhou, S. G. Yan, X. L. Dong. Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability. ACS Sustain. Chem. Eng., 6, 12755(2018).

    [58] J. K. Liu, Y. Q. Ding, C. Y. Li, W. F. Bai, P. Zheng, J. J. Zhang, J. W. Zhai. Relaxor ferroelectric (Bi0.5Na0.5)TiO3-based ceramic with remarkable comprehensive energy storage performance under low electric field for capacitor applications. J. Mater. Sci. Mater. Electron., 32, 21164(2021).

    [59] M. X. Zhou, R. h. Liang, Z. y. Zhou, X. L. Dong. Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C, 6, 8528(2018).

    [60] K. Zhang, P. Zheng, H. F. Zhang, Z. A. Niu, C. Luo, W. F. Bai, J. J. Zhang, L. Zheng, Y. Zhang. Excellent energy storage performance of paraelectric Ba0.4Sr0.6TiO3 based ceramics through induction of polar nano-regions. Ceram. Int., 48, 19864(2022).

    Xiangting Zheng, Wentao Zhong, Peng Zheng, Wangfeng Bai, Chong Luo, Liang Zheng, Yang Zhang. A novel Sr5BiTi3Nb7O30 tungsten bronze ceramic with high energy density and efficiency for dielectric capacitor applications[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242009
    Download Citation