• Advanced Photonics Nexus
  • Vol. 4, Issue 3, 036009 (2025)
Anton Ovcharenko1,*, Sergey Polevoy2, and Oleh Yermakov1,3,*
Author Affiliations
  • 1V. N. Karazin Kharkiv National University, Department of Computational Physics, Kharkiv, Ukraine
  • 2O. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine, Radiospectroscopy Department, Kharkiv, Ukraine
  • 3Leibniz Institute of Photonic Technology, Department of Fiber Photonics, Jena, Germany
  • show less
    DOI: 10.1117/1.APN.4.3.036009 Cite this Article Set citation alerts
    Anton Ovcharenko, Sergey Polevoy, Oleh Yermakov, "Forward and inverse design of single-layer metasurface-based broadband antireflective coating for silicon solar cells," Adv. Photon. Nexus 4, 036009 (2025) Copy Citation Text show less
    References

    [1] H. K. Raut et al. Anti-reflective coatings: a critical, in-depth review. Energy Environ. Sci., 4, 3779-3804(2011). https://doi.org/10.1039/c1ee01297e

    [2] S. Chattopadhyay et al. Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R Rep., 69, 1-35(2010). https://doi.org/10.1016/j.mser.2010.04.001

    [3] C. Ji et al. Recent applications of antireflection coatings in solar cells. Photonics, 9, 906(2022). https://doi.org/10.3390/photonics9120906

    [4] B. Zhang et al. Metasurface optical antireflection coating. Appl. Phys. Lett., 105, 241113(2014). https://doi.org/10.1063/1.4904827

    [5] A. Monti et al. Metasurface-based anti-reflection coatings at optical frequencies. J. Opt., 20, 055001(2018). https://doi.org/10.1088/2040-8986/aab886

    [6] A. Peter Amalathas, M. M. Alkaisi. Nanostructures for light trapping in thin film solar cells. Micromachines, 10, 619(2019). https://doi.org/10.3390/mi10090619

    [7] E. Cortés et al. Optical metasurfaces for energy conversion. Chem. Rev., 122, 15082-15176(2022). https://doi.org/10.1021/acs.chemrev.2c00078

    [8] Y.-H. Liao et al. Antireflection of optical anisotropic dielectric metasurfaces. Sci. Rep., 13, 1641(2023). https://doi.org/10.1038/s41598-023-28619-8

    [9] K. Baryshnikova et al. Plasmonic and silicon spherical nanoparticle antireflective coatings. Sci. Rep., 6, 22136(2016). https://doi.org/10.1038/srep22136

    [10] V. E. Babicheva et al. Reflection compensation mediated by electric and magnetic resonances of all-dielectric metasurfaces. J. Opt. Soc. Amer. B, 34, D18-D28(2017). https://doi.org/10.1364/JOSAB.34.000D18

    [11] J. B. Khurgin. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol., 10, 2-6(2015). https://doi.org/10.1038/nnano.2014.310

    [12] D. G. Baranov et al. All-dielectric nanophotonics: the quest for better materials and fabrication techniques. Optica, 4, 814-825(2017). https://doi.org/10.1364/OPTICA.4.000814

    [13] C. Schinke et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv., 5, 067168(2015). https://doi.org/10.1063/1.4923379

    [14] P. Spinelli, M. A. Verschuuren, A. Polman. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun., 3, 692(2012). https://doi.org/10.1038/ncomms1691

    [15] E. F. Pecora et al. Broadband antireflection coatings employing multiresonant dielectric metasurfaces. ACS Photonics, 5, 4456-4462(2018). https://doi.org/10.1021/acsphotonics.8b00913

    [16] M. Kim, A. M. Wong, G. V. Eleftheriades. Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Phys. Rev. X, 4, 041042(2014). https://doi.org/10.1103/PhysRevX.4.041042

    [17] M. Decker et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater., 3, 813-820(2015). https://doi.org/10.1002/adom.201400584

    [18] Y. F. Yu et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Las. Photonics Rev., 9, 412-418(2015). https://doi.org/10.1002/lpor.201500041

    [19] V. E. Babicheva, A. B. Evlyukhin. Resonant lattice Kerker effect in metasurfaces with electric and magnetic optical responses. Las. Photonics Rev., 11, 1700132(2017). https://doi.org/10.1002/lpor.201700132

    [20] W. Liu, Y. S. Kivshar. Generalized Kerker effects in nanophotonics and meta-optics. Opt. Express, 26, 13085-13105(2018). https://doi.org/10.1364/OE.26.013085

    [21] K. Baryshnikova et al. Broadband antireflection with halide perovskite metasurfaces. Laser Photonics Rev., 14, 2000338(2020). https://doi.org/10.1002/lpor.202000338

    [22] M. Chen, J. Jiang, J. A. Fan. Algorithm-driven paradigms for freeform optical engineering. ACS Photonics, 9, 2860-2871(2022). https://doi.org/10.1021/acsphotonics.2c00612

    [23] Y. Fu et al. Unleashing the potential: AI empowered advanced metasurface research. Nanophotonics, 13, 1239-1278(2024). https://doi.org/10.1515/nanoph-2023-0759

    [24] D. Sell et al. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett., 17, 3752-3757(2017). https://doi.org/10.1021/acs.nanolett.7b01082

    [25] T. Choi et al. Multiwavelength achromatic deflector in the visible using a single-layer freeform metasurface. Nano Lett., 24, 10980-10986(2024). https://doi.org/10.1021/acs.nanolett.4c02995

    [26] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017). https://doi.org/10.1126/science.aam8100

    [27] P. R. Wiecha, O. L. Muskens. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures. Nano Lett., 20, 329-338(2019). https://doi.org/10.1021/acs.nanolett.9b03971

    [28] M. V. Zhelyeznyakov, S. Brunton, A. Majumdar. Deep learning to accelerate scatterer-to-field mapping for inverse design of dielectric metasurfaces. ACS Photonics, 8, 481-488(2021). https://doi.org/10.1021/acsphotonics.0c01468

    [29] M. Chen et al. High speed simulation and freeform optimization of nanophotonic devices with physics-augmented deep learning. ACS Photonics, 9, 3110-3123(2022). https://doi.org/10.1021/acsphotonics.2c00876

    [30] E. Khoram et al. Controlling the minimal feature sizes in adjoint optimization of nanophotonic devices using b-spline surfaces. Opt. Express, 28, 7060-7069(2020). https://doi.org/10.1364/OE.384438

    [31] M. Chen et al. Validation and characterization of algorithms and software for photonics inverse design. J. Opt. Soc. Amer. B, 41, A161-A176(2024). https://doi.org/10.1364/JOSAB.506412

    [32] Y. Zhou et al. Large-area, high-numerical-aperture, freeform metasurfaces. Laser Photonics Rev., 18, 2300988(2024). https://doi.org/10.1002/lpor.202300988

    [33] F. Kreith, J. F. Kreider. Principles of Solar Engineering, 778(1978).

    [34] J. Jiang, J. A. Fan. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett., 19, 5366-5372(2019). https://doi.org/10.1021/acs.nanolett.9b01857

    [35] J. Jiang, J. A. Fan. Simulator-based training of generative neural networks for the inverse design of metasurfaces. Nanophotonics, 9, 1059-1069(2019). https://doi.org/10.1515/nanoph-2019-0330

    [36] A. Ndao et al. Octave bandwidth photonic fishnet-achromatic-metalens. Nat. Commun., 11, 3205(2020). https://doi.org/10.1038/s41467-020-17015-9

    [37] J. Jiang, J. A. Fan. Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks. Nanophotonics, 10, 361-369(2021). https://doi.org/10.1515/nanoph-2020-0407

    [38] J. P. Hugonin, P. Lalanne. Reticolo software for grating analysis(2021).

    [39] T. W. Hughes et al. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photonics, 5, 4781-4787(2018). https://doi.org/10.1021/acsphotonics.8b01522

    [40] T. Phan et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl., 8(2019). https://doi.org/10.1038/s41377-019-0159-5

    [41] Comsol Multiphysics®, https://www.comsol.com/comsol-multiphysics.

    [42] Z. Zhou et al. Efficient silicon metasurfaces for visible light. ACS Photonics, 4, 544-551(2017). https://doi.org/10.1021/acsphotonics.6b00740

    [43] T. Gissibl et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics, 10, 554-560(2016). https://doi.org/10.1038/nphoton.2016.121

    [44] H. Wang et al. Two-photon polymerization lithography for imaging optics. Int. J. Extreme Manuf., 6, 042002(2024). https://doi.org/10.1088/2631-7990/ad35fe

    Anton Ovcharenko, Sergey Polevoy, Oleh Yermakov, "Forward and inverse design of single-layer metasurface-based broadband antireflective coating for silicon solar cells," Adv. Photon. Nexus 4, 036009 (2025)
    Download Citation