• Chinese Optics Letters
  • Vol. 19, Issue 6, 060011 (2021)
Bingxia Wang1、2, Shan Liu3, Tianxiang Xu1, Ruwei Zhao1, Peixiang Lu2, Wieslaw Krolikowski3、4, and Yan Sheng1、3、*
Author Affiliations
  • 1Laboratory of Infrared Materials and Devices, Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
  • 2Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 3Laser Physics Center, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
  • 4Science Program, Texas A&M University at Qatar, Doha 23874, Qatar
  • show less
    DOI: 10.3788/COL202119.060011 Cite this Article Set citation alerts
    Bingxia Wang, Shan Liu, Tianxiang Xu, Ruwei Zhao, Peixiang Lu, Wieslaw Krolikowski, Yan Sheng. Nonlinear Talbot self-healing in periodically poled LiNbO3 crystal [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060011 Copy Citation Text show less
    References

    [1] V. Berger. Nonlinear photonic crystals. Phys. Rev. Lett., 81, 4136(1998).

    [2] A. Arie, N. Voloch. Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals. Laser Photon. Rev., 4, 355(2010).

    [3] J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan. Interactions between light waves in a nonlinear dielectric. Phys. Rev., 127, 1918(1962).

    [4] M. M. Fejer, D. H. Jundt, R. L. Byer, G. A. Magel. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron., 28, 2631(1992).

    [5] Y. Sheng, J. Dou, B. Cheng, D. Zhang. Effective generation of red-green-blue laser in a two-dimensional decagonal photonic superlattice. Appl. Phys. B, 87, 603(2007).

    [6] R. Lifshitz, A. Arie, A. Bahabad. Photonic quasicrystals for nonlinear optical frequency conversion. Phys. Rev. Lett., 95, 133901(2005).

    [7] Y. Sheng, J. Dou, B. Ma, B. Cheng, D. Zhang. Broadband efficient second harmonic generation in media with a short-range order. Appl. Phys. Lett., 91, 011101(2007).

    [8] Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, W. Krolikowski. Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal. Appl. Phys. Lett., 99, 031108(2011).

    [9] B. Wang, K. Switowski, C. Cojocaru, V. Roppo, Y. Sheng, M. Scalora, J. Kisielewski, D. Pawlak, R. Vilaseca, H. Akhouayri, W. Krolikowski, J. Trull. Comparative analysis of ferroelectric domain statistics via nonlinear diffraction in random nonlinear materials. Opt. Express, 26, 1083(2018).

    [10] T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. Yu, H. Zhang, J. Wang, Y. Sheng, W. Krolikowski. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat. Photon., 12, 591(2018).

    [11] D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, M. Xiao. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photon., 12, 596(2018).

    [12] Y. Zhang, Y. Sheng, S. Zhu, M. Xiao, W. Krolikowski. Nonlinear photonic crystals: from 2D to 3D. Optica, 8, 372(2021).

    [13] P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, N. B. Ming. Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal. Phys. Rev. Lett., 93, 133904(2004).

    [14] S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, Y. S. Kivshar. Generation of second-harmonic conical waves via nonlinear Bragg diffraction. Phys. Rev. Lett., 100, 103902(2008).

    [15] Y. Sheng, S. M. Saltiel, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, Y. S. Kivshar. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures. IEEE J. Quantum Electron., 45, 1465(2009).

    [16] X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, Y. Sheng. Ferroelectric domain engineering by focused infrared femtosecond pulses. Appl. Phys. Lett., 107, 141102(2015).

    [17] S. Liu, K. Switkowski, C. Xu, J. Tian, B. Wang, P. Lu, W. Krolikowski, Y. Sheng. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals. Nat. Commun., 10, 3208(2019).

    [18] D. Wei, C. Wang, X. Xu, H. Wang, Y. Hu, P. Chen, J. Li, Y. Zhu, C. Xin, X. Hu, Y. Zhang, D. Wu, J. Chu, S. Zhu, M. Xiao. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nat. Commun., 10, 4193(2019).

    [19] B. Zhu, H. Liu, Y. Liu, X. Yan, Y. Chen, X. Chen. Second-harmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining. Opt. Lett., 45, 4132(2020).

    [20] S. Liu, L. M. Mazur, W. Krolikowski, Y. Sheng. Nonlinear volume holography in 3D nonlinear photonic crystals. Laser Photon. Rev., 14, 2000224(2020).

    [21] S. Keren-Zur, T. Ellenbogen. A new dimension for nonlinear photonic crystals. Nat. Photon., 12, 575(2018).

    [22] J. Imbrock, L. Wesemann, S. Kroesen, M. Ayoub, C. Denz. Waveguide-integrated three-dimensional quasi-phase-matching structures. Optica, 7, 28(2020).

    [23] G. Hu, X. Hong, K. Wang, J. Wu, H.-X. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, C.-W. Qiu. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photon., 13, 467(2019).

    [24] B. Wang, X. Hong, K. Wang, X. Chen, S. Liu, W. Krolikowski, P. Lu, Y. Sheng. Nonlinear detour phase holography. Nanoscale, 13, 2693(2021).

    [25] H. F. Talbot. Facts relating to optical science. Philos. Mag., 9, 401(1836).

    [26] L. Rayleigh. On the manufacture and theory of diffraction grating. Philos. Mag., 11, 196(1881).

    [27] Y. Zhang, J. Wen, S. N. Zhu, M. Xiao. Nonlinear Talbot effect. Phys. Rev. Lett., 104, 183901(2010).

    [28] J. Wen, Y. Zhang, M. Xiao. The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics. Adv. Opt. Photon., 5, 83(2013).

    [29] D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, M. Xiao. Diffraction interference induced superfocusing in nonlinear Talbot effect. Sci. Rep., 4, 6134(2014).

    [30] X. Zhao, Y. Zheng, H. Ren, N. An, X. Chen. Cherenkov second-harmonic Talbot effect in one-dimension nonlinear photonic crystal. Opt. Lett., 39, 5885(2014).

    [31] Z. Chen, D. Liu, Y. Zhang, J. Wen, S. N. Zhu, M. Xiao. Fractional second-harmonic Talbot effect. Opt. Lett., 37, 689(2012).

    [32] L. Li, H. Liu, X. Chen. Dynamic manipulation of nonlinear Talbot effect with structured light. Opt. Lett., 46, 1281(2021).

    [33] A. Bakman, S. Fishman, M. Fink, E. Fort, S. Wildeman. Observation of the Talbot effect with water waves. Am. J. Phys., 87, 38(2019).

    [34] L. Urbanski, A. Isoyan, A. Stein, J. J. Rocca, C. S. Menoni, M. C. Marconi. Defect-tolerant extreme ultraviolet nanoscale printing. Opt. Lett., 37, 3633(2012).

    [35] Y. Sheng, A. Best, H. J. Butt, W. Krolikowski, A. Arie, K. Koynov. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt. Express, 18, 16539(2010).

    Data from CrossRef

    [1] Ningning Wang, Shan Liu, Ruwei Zhao, Tianxiang Xu, Feng Chen, Ady Arie, Wieslaw Krolikowski, Yan Sheng. Effect of spatial variation of the duty cycle in transverse second-harmonic generation. Optics Letters, 47, 3656(2022).

    Bingxia Wang, Shan Liu, Tianxiang Xu, Ruwei Zhao, Peixiang Lu, Wieslaw Krolikowski, Yan Sheng. Nonlinear Talbot self-healing in periodically poled LiNbO3 crystal [Invited][J]. Chinese Optics Letters, 2021, 19(6): 060011
    Download Citation