[1] J. W. Head, H.Hiesinger. New views of lunar geoscience: An introduction and overview. Rev. Mineral. Geochem., 60, 1(2006).
[2] A.Deutsch, F.Langenhorst. Shock metamorphism of minerals. Elements, 8, 31(2012).
[3] C.Hamann, K.Metzler, D.St?ffler. Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteorit. Planet. Sci., 53, 5(2018).
[4] P.Gillet, A. E.Goresy. Shock events in the solar system: The message from minerals in terrestrial planets and asteroids. Annu. Rev. Earth Planet. Sci., 41, 257(2013).
[5] M.Miyahara, N.Tomioka. High-pressure minerals in shocked meteorites. Meteorit. Planet. Sci., 52, 2017(2017).
[6] T.Arai, K.Hiraga, Y.Ito, M.Kimura, T.Mikouchi, M.Miyahara, E.Ohtani, S.Ozawa, K.Sato. Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface. Proc. Natl. Acad. Sci. U. S. A., 108, 463(2011).
[7] N.Hirao, S.Kaneko, M.Kayama, M.Miyahara, T.Nagase, H.Nishido, E.Ohtani, T.Sakai. Discovery of seifertite in a shocked lunar meteorite. Nat. Commun., 4, 1737(2013).
[8] U.B?ttger, V. A.Fernandes, L.Ferrière, J.Fritz, A.Greshake, M.Klementova, L.Palatinus, R. G.Tr?nnes, R.Wirth. Donwilhelmsite, [CaAl4Si2O11], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments. Am. Mineral., 105, 1704(2020).
[9] L.Gu, B. A.Hofmann, S.Hu, Y.Lin, T.Sekine, L.Xiao, W.Xing, C.Zhang, M.Zhang. Discovery of reidite in the lunar meteorite Sayh al Uhaymir 169. Geophys. Res. Lett., 47, e2020GL089583(2020).
[10] J.-N.Chen, Y.-J.Guo, Q.-T.Jiang, Y.Li, N.Sakamoto, N.Tomioka, H.Yurimoto, A.-C.Zhang. Widespread tissintite in strongly shock-lithified lunar regolith breccias. Geophys. Res. Lett., 48, e2020GL091554(2021).
[11] C.Floss, W.-B.Hsu, Q.-L.Li, X.-H.Li, Y.Liu, L. A.Taylor, A.-C.Zhang. Petrogenesis of lunar meteorite Northwest Africa 2977: Constraints from in situ microprobe results. Meteorit. Planet. Sci., 45, 1929(2010).
[12] J. A.Barrat, M.Bohn, M.Chaussidon, P.Gillet, C.G?pel, M.Lesourd. Lithium behavior during cooling of a dry basalt: An ion-microprobe study of the lunar meteorite Northwest Africa 479 (NWA 479). Geochim. Cosmochim. Acta, 69, 5597(2005).
[13] T.Arai, N.Hirao, S.Kaneko, M.Miyahara, E.Ohtani, K.Sato. Discovery of stishovite in Apollo 15299 sample. Am. Mineral., 100, 1308(2015).
[14] M.Chen, A. E.Goresy, T. G.Sharp, B.Wopenka. A post-stishovite SiO2 polymorph in the meteorite Shergotty: Implications for impact events. Science, 284, 1511(1999).
[15] M.Chen, L.Dubrovinsky, A. E.Goresy, S. K.Saxena, T. G.Sharp. A monoclinic post-stishovite polymorph of silica in the Shergotty meteorite. Science, 288, 1632(2000).
[16] M.Chen, L.Dubrovinsky, A.El Goresy, T. G.Sharp. Stishovite and post-stishovite polymorphs of silica in the Shergotty meteorite: Their nature, petrographic settings versus theoretical predictions and relevance to Earth’s mantle. J. Phys. Chem. Solids, 65, 1597(2004).
[17] N. Z.Boctor, M.Chen, P.Dera, L.Dubrovinsky, A.El Goresy, R. J.Hemley, C. T.Prewitt, T. G.Sharp, B.Wopenka. Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. Eur. J. Mineral., 20, 523(2008).
[18] H.Changela, L.Gu, S.Hu, Y.Li, Y.Lin, X.Tang, A.Yamaguchi, T.Zhang. Discovery of coesite from the martian shergottite Northwest Africa 8657. Geochim. Cosmochim. Acta, 286, 404(2020).
[19] L.Bindi, M.Miyahara, N.Tomioka. Natural and experimental high-pressure, shock-produced terrestrial and extraterrestrial materials. Prog. Earth Planet. Sci., 8, 59(2021).
[20] J. R.Beckett, C.Ma, O.Tschauner. A new high pressure calcium aluminosilicate (CaAl2Si3.5O11) in Martian meteorites: Another after-life for plagioclase and connections to the CAS phase.
[21] J. R.Beckett, C.Ma, O.Tschauner. A closer look at Martian meteorites: Discovery of the new mineral zagamiite, CaAl2Si3.5O11, a shock-metamorphic, high-pressure, calcium aluminosilicate.
[22] H. A.Bechtel, J. R.Beckett, C.Ma, A.MacDowell, V. B.Prakapenka, C.Prescher, G. R.Rossman, O.Tschauner. Liebermannite, KAlSi3O8, a new shock-metamorphic, high-pressure mineral from the Zagami Martian meteorite. Meteorit. Planet. Sci., 53, 50(2018).
[23] E.Greenberg, C.Ma, V.Prakapenka, J. G.Spray, O.Tschauner. Stöfflerite, (Ca,Na)(Si,Al)4O8 in the hollandite structure: A new high-pressure polymorph of anorthite from martian meteorite NWA 856. Am. Mineral., 106, 650(2021).
[24] P.Beck, I.Daniel, A.El Goresy, L.Gautron, P.Gillet. A new natural high-pressure (Na,Ca)-hexaluminosilicate [(CaxNa1−x)Al3+xSi3−xO11] in shocked Martian meteorites. Earth Planet. Sci. Lett., 219, 1(2004).
[25] P.Beck, A.El Goresy, P.Gillet, M.Miyahara, G.Montagnac, E.Ohtani, S.Ozawa. Shock-induced deformation of Shergottites: Shock-pressures and perturbations of magmatic ages on Mars. Geochim. Cosmochim. Acta, 101, 233(2013).
[26] I. P.Baziotis, R. J.Bodnar, P. S.DeCarli, H.Jay Melosh, Y.Liu, H. Y.McSween, L. A.Taylor. The Tissint Martian meteorite as evidence for the largest impact excavation. Nat. Commun., 4, 1404(2013).
[27] J.Filiberto, J.Hu, T. G.Sharp, E. L.Walton. Heterogeneous mineral assemblages in martian meteorite Tissint as a result of a recent small impact event on Mars. Geochim. Cosmochim. Acta, 140, 334(2014).
[28] J. B.Balta, I. P.Baziotis, Y.Guan, Q.He, W.Hsu, L.Xiao. Petrography and geochemistry of the enriched basaltic shergottite Northwest Africa 2975. Meteorit. Planet. Sci., 50, 2024(2015).
[29] J.Hafner, R. J.Hemley, G.Kresse, D. M.Teter. High pressure polymorphism in silica. Phys. Rev. Lett., 80, 2145(1998).
[30] R.Ahuja, L. S.Dubrovinsky, O.Eriksson, B.Johansson, P.Lazor, S. K.Saxena, J. M.Wills. Experimental and theoretical identification of a new high-pressure phase of silica. Nature, 388, 362(1997).
[31] N. A.Dubrovinskaia, L. S.Dubrovinsky, J.Hu, T.Le Bihan, S.Rekhi, S. K.Saxena, G.Shen, F.Tutti. Pressure-induced transformations of cristobalite. Chem. Phys. Lett., 333, 264(2001).
[32] N. A.Dubrovinskaia, L. S.Dubrovinsky, T.Le Bihan, S.Rekhi, S. K.Saxena, F.Tutti. Direct transition from cristobalite to post-stishovite α-PbO2-like silica phase. Eur. J. Mineral., 13, 479(2001).
[33] K.-i.Funakoshi, Y.Higo, T.Kato, T.Kubo. Curious kinetic behavior in silica polymorphs solves seifertite puzzle in shocked meteorite. Sci. Adv., 1, e1500075(2015).
[34] M.Chen, K.Di, J.Duan, J.Kong, B.Liu, Z.Liu, M.Peng, Z.Rong, W.Wan, J.Wang, Y.Wang, J.Xie, Y.Zhang. Localization of the Chang’e-5 lander using radio-tracking and image-based methods. Remote Sens., 13, 590(2021).
[35] Y.Lin, W.Yang. New lunar samples returned by Chang’e-5: Opportunities for new discoveries and international collaboration. Innovation, 2, 100070(2021).
[36] X.Deng, H.Hu, C.Li, B.Liu, D.Liu, J.Liu, Z.Ouyang, Z.-Y.Pei, X.Ren, Y.Su, Q.Wang, W.Wen, C.Xiao, D.Xue, M.-F.Yang, Y.Yao, X.Zeng, G.Zhang, H.Zhang, Q.Zhou, W.Zuo. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev., 9, nwab188(2022).
[37] Z.Bao, G.Benedix, X.Che, C.Crow, R.Fan, J.Head, B.Jolliff, F.Jourdan, K. H.Joy, D.Li, Z.Li, D.Liu, J.Liu, T.Long, C. R.Neal, A.Nemchin, M. D.Norman, J. F.Snape, R.Tartese, C.Wang, S. G.Webb, M. J.Whitehouse, S.Xie, C.Yang, Z.Yang. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science, 374, 887(2021).
[38] S.Guo, C.Li, J.Li, J.-H.Li, Q.-L.Li, X.-H.Li, Y.Lin, Y.Liu, H.-X.Ma, Z.Ouyang, G.-Q.Tang, X.Tang, F.-Y.Wu, Z.Xiao, J.-Y.Yuan, Q.Zhou. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature, 600, 54(2021).
[39] S.Boschi, J.Chen, Y.Guan, H.Hu, H.Hui, W.Li, X.-L.Wang, Z.Yin, W.Zhang. Compositional variability of 2.0-Ga lunar basalts at the Chang’e-5 landing site. J. Geophys. Res.: Planets, 128, e2022JE007627(2023).
[40] X.Che, C.Crow, J. W.Head, K. H.Joy, D.Liu, S.Liu, T.Long, K.Miljkovic, C. R.Neal, A.Nemchin, M. D.Norman, Y.Qian, J. F.Snape, R.Tartèse, C.Wang, M.Whitehouse, L.Xiao, S.Xie, C.Yang, Z.Yang, X.Yu, N.Zellner, G.Zhou. Constraining the formation and transport of lunar impact glasses using the ages and chemical compositions of Chang’e-5 glass beads. Sci. Adv., 8, eabq2542(2022).
[41] Y.Chen, S.Hu, H.Hui, Q.-L.Li, X.-H.Li, Y.Lin, H.-X.Ma, H.-C.Tian, H.Wang, F.-Y.Wu, S.-T.Wu, Z.Xiao, W.Yang, C.Zhang, D.Zhang, Q.Zhou. Geochemistry of impact glasses in the Chang’e-5 regolith: Constraints on impact melting and the petrogenesis of local basalt. Geochim. Cosmochim. Acta, 335, 183(2022).
[42] H.Becker, K.Cao, Q.He, T.He, Z.Hu, J.Li, Y.Li, Y.Liu, Z.She, Z.Wang, X.Wu, L.Xiao, W.Zhang, K.Zong. Bulk compositions of the Chang’E-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts. Geochim. Cosmochim. Acta, 335, 284(2022).
[43] W.Du, R.Li, S.Liu, R.Pang, J.Yang, A.Zhang. New occurrence of seifertite and stishovite in Chang’E-5 regolith. Geophys. Res. Lett., 49, e2022GL098722(2022).
[44] E.Bobocioiu, E.Bykova, R.Caracas, A.?ernok, L. S.Dubrovinsky, G.Habler, M.Hanfland, H.-P.Liermann, K.Marquardt, M.Mezouar. Compressional pathways of α-cristobalite, structure of cristobalite X-I, and towards the understanding of seifertite formation. Nat. Commun., 8, 15647(2017).
[45] J. W.Head, H.Hiesinger, Y.Qian, C. H.van der Bogert, L.Wilson, L.Xiao. Young lunar mare basalts in the Chang’e-5 sample return region, northern Oceanus Procellarum. Earth Planet. Sci. Lett., 555, 116702(2021).
[46] S.Althoff, R.Bugiolacchi, Q.He, J. W.Head, Y.Qian, T.Wilhelm, C.W?hler, L.Xiao, B.Ye, Y.Yuan, S.Zhao. Copernican-aged (<200 Ma) impact ejecta at the Chang’e-5 landing site: Statistical evidence from crater morphology, morphometry, and degradation models. Geophys. Res. Lett., 48, e2021GL095341(2021).
[47] Q.He, J. W.Head, H.Hiesinger, J.Huang, Y.Kang, X.Lai, Y.Pang, Y.Qian, C. H.van der Bogert, G.Wang, J.Wang, Q.Wang, L.Xiao, R.Yang, Y.Yuan, N.Zhang, J.Zhao, S.Zhao. China’s Chang’e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett., 561, 116855(2021).
[48] R.Chang, Y.Chen, C.Huang, L.-H.Jia, X.-G.Li, H.-L.Lin, H.-C.Tian, H.Wang, F.-Y.Wu, S.-T.Wu, L.-W.Xie, L.Xu, S.-H.Yang, W.Yang, Y.-H.Yang, C.Zhang, D.Zhang, D.-P.Zhang, G.-L.Zhang, Q.Zhou. Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature, 600, 59(2021).
[49] L.Jia, X.Li, Y.Lin, H.-C.Tian, F.Wu, S.Wu, W.Yang, D.Zhang, H.Zhang. Petrogenesis of Chang’E-5 mare basalts: Clues from the trace elements in plagioclase. Am. Mineral., 108, 1669(2023).
[50] I.Baziotis, J. M. D.Day, Q.He, Z.Hu, Y.Li, B.Luo, C. R.Neal, F.Pan, Y.Qian, Z.She, L.Wang, Z.Wang, X.Wu, L.Xiao, W.Zhang, K.Zong. Detailed petrogenesis of the unsampled Oceanus Procellarum: The case of the Chang’e-5 mare basalts. Icarus, 383, 115082(2022).
[51] F.Hatert, S. J.Mills, R.Miyawaki, M.Pasero. IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 69. Eur. J. Mineral., 34, 463(2022).
[52] R. O.Colson, L. A.Haskin, B. L.Jolliff, M.Wadhwa. Partitioning in REE-saturating minerals: Theory, experiment, and modelling of whitlockite, apatite, and evolution of lunar residual magmas. Geochim. Cosmochim. Acta, 57, 4069(1993).
[53] M. E.Gunter, J. M.Hughes, B. L.Jolliff. The atomic arrangement of merrillite from the Fra Mauro Formation, Apollo 14 lunar mission: The first structure of merrillite from the Moon. Am. Mineral., 91, 1547(2006).
[54] J. J.Freeman, J. M.Hughes, B. L.Jolliff, R. A.Zeigler. Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite. Am. Mineral., 91, 1583(2006).
[55] Y.Chen, G. H.Howarth, Y.Liu, J. F.Pernet-Fisher, L. A.Taylor. Estimating the lunar mantle water budget from phosphates: Complications associated with silicate-liquid-immiscibility. Geochim. Cosmochim. Acta, 144, 326(2014).
[56] A. M.álvarez-Valero, L. M.Kriegsman, J. F.Pernet-Fisher. Petrologic history of lunar phosphates accounts for the water content of the Moon’s mare basalts. Geosciences, 9, 421(2019).
[57] M.Anand, T. J.Barrett, I. A.Franchi, A. A.Griffiths, N. J.Potts, R.Tartèse, W.van Westrenen. Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation. Meteorit. Planet. Sci., 51, 1555(2016).
[58] W.Du, D.Ju, R.Li, J.Liu, R.Pang, J.Yang. Significance of silicate liquid immiscibility for the origin of young highly evolved lithic clasts in Chang’E-5 regolith. Geochim. Cosmochim. Acta, 340, 189(2023).
[59] C. R.Neal, G. J.Taylor, R.Neal C., J.Taylor G., L. A.Taylor, P. H.Warren. Lunar granite petrogenesis and the process of silicate liquid immiscibility: The barium problem. Workshop on Moon in Transition: Apollo 14 KREEP, and Evolved Lunar Rocks, 89(1989).
[60] C. R.Neal, L. A.Taylor. The nature of barium partitioning between immiscible melts: A comparison of experimental and natural systems with reference to lunar granite petrogenesis, 209(1989).
[61] J. J.Papike, C. K.Shearer, M. N.Spilde. Trace-element partitioning between immiscible lunar melts: An example from naturally occurring lunar melt inclusions. Am. Mineral., 86, 238(2001).
[62] B.Charlier, B.Charlier, I. V.Veksler, B.Charlier, O.Namur, R.Latypov, C.Tegner and, O.Namur, B.Charlier, O.Namur, R.Latypov, C.Tegner and, R.Latypov, B.Charlier, O.Namur, R.Latypov, C.Tegner and, C.Tegner. Layered Intrusions, 229(2015).
[63] D. S.Draper, A. L.Gullikson, J. J.Hagerty, J. F.Rapp, M. R.Reid. Silicic lunar volcanism: Testing the crustal melting model. Am. Mineral., 101, 2312(2016).
[64] G. H.Daniel, P. C.Hess, M. J.Rutherford. Experimental liquid line of descent and liquid immiscibility for basalt 70017, 1, 569(1974).
[65] R. N.Guillemette, P. C.Hess, M. J.Rutherford, F. J.Ryerson, H. A.Tuchfeld. Residual products of fractional crystallization of lunar magmas: An experimental study, 895(1975).
[66] B.Charlier, T. L.Grove. Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contrib. Mineral. Petrol., 164, 27(2012).
[67] H. J.Melosh. Impact Cratering: A Geologic Process(1989).
[68] H.Hiesinger, B.Jolliff, J.Plescia, A.Stadermann, C. H.van der Bogert, M.Zanetti. Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon. Icarus, 298, 64(2017).
[69] C. C.Allen, J. L.Bandfield, N.Bowles, R. C.Elphic, T. D.Glotch, B. T.Greenhagen, K. D.Hanna, P. G.Lucey, D. A.Paige, I. R.Thomas, M. B.Wyatt. Highly silicic compositions on the Moon. Science, 329, 1510(2010).
[70] R. N.Clegg-Watkins, E.Coman, T. A.Giguere, B. L.Jolliff, S. J.Lawrence, J. D.Stopar, M. J.Watkins. Nonmare volcanism on the Moon: Photometric evidence for the presence of evolved silicic materials. Icarus, 285, 169(2017).
[71] J. T.Cahill, T. D.Glotch, B. T.Greenhagen, E. R.Jawin, N.Kumari, D. J.Lawrence, S.Li, P. G.Lucey, D. P.Moriarty, R. N.Watkinset?al.. The scientific value of a sustained exploration program at the Aristarchus plateau. Planet. Sci. J., 2, 136(2021).
[72] J.Hu, T. G.Sharp. Formation, preservation and extinction of high-pressure minerals in meteorites: Temperature effects in shock metamorphism and shock classification. Prog. Earth Planet. Sci., 9, 6(2022).
[73] L.Bindi, C.Ma, O.Tschauner, and L.Bindi, G.Cruciani. Discovering high-pressure and high-temperature minerals. Celebrating the International Year of Mineralogy: Progress and Landmark Discoveries of the Last Decades, 169(2023).