• Acta Photonica Sinica
  • Vol. 34, Issue 4, 503 (2005)
[in Chinese]1, [in Chinese]2, [in Chinese]1, [in Chinese]1, [in Chinese]1, and [in Chinese]1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Influence of Electrical Resistance of the Fused Interface on the Electrical and Thermal Characteristics of VCSELs[J]. Acta Photonica Sinica, 2005, 34(4): 503 Copy Citation Text show less
    References

    [1] Black K A , Abraham P, Margalit N M , et al. Double - fused 1.5 μm vertical cavity lasers with record high To of 132 K at room temperature. Electronics Letters ,1998,34(20): 1947 ~ 1949

    [2] Karim A,Abraham P, Lofgreen D, et al. Wafer bonded 1.55μm vertical-cavity lasers with continuous-wave operation up to 105℃. Applied Physics Letters ,2001,78 (18) :2632 ~ 2633

    [3] Rapp S, Salomonsson F, Streubel K, et al. All-epitaxial single-fused 1.55 μm vertical cavity lasers based on an InP Bragg reflector. Japanese Journal of Applied Physics, 1999,38:1261 ~ 1264

    [4] Salomonsson F, Streubel K, Bentell J, et al. Wafer fused pInP/p-GaAs heterojunctions. Journal of Applied Physics,1998, 82(2) :768~774

    [5] Hammar M, Wennekes F, Salomonsson F, et al. Systematics of electrical conductivity across InP to GaAs wafer-fused interfaces. Japanese Journal of Applied Physics, 1999, 38(2B) :1111 ~ 1114

    [6] Sagalowicz L, Rudra A, Kapon E,et al. Defects, structure, and chemistry of InP-GaAs interfaces obtained by wafer bonding.Journal of Applied Physics,2000,87(9) :4135~4146

    [7] Ram R J, Dudley J J, Bowers J E, et al. GaAs to InP wafer fusion. Journal of Applied Physics ,1995,78(6) :4227~4237

    [10] Hadlev G R, Lear K L, Warren M E, et al. Comprehensive numerical Modeling of vertical-cavity surface-emitting lasers. IEEE J Quantum Electron, 1996,32(4): 607~616

    [11] Zhang J P. Single mode power and modal behaviour in buried vertical-cavity surface-emitting lasers. IEE Proc Optoelectron, 1995,142 (2) :87 ~ 93

    [12] Chuang S L. Physics of Optoelectronic Devices. New York:John Wiley&Sons, Inc. , 1995,362 ~ 363

    [13] Taylor G W, Claisse P R. Transport solution for the SCH quantum-well laser diode. IEEE J Quantum Electron,1995,31(12): 2133~2141

    [14] Taylor G W, Evaldsson P A. Temperature dependent operation of the vertical cavity surface emitting laser. IEEE J Quantum Electron, 1994,30(10): 2262 ~ 2270

    [15] Kobayashi T, Furukawa Y. Temperature distribution in the GaAs-AlGaAs double-heterostructure laser below and above the threshold current. Japanese Journal of Applied Physics,1975,14(12): 1981 ~ 1986

    [16] Nakwaski W, Osinski M. Thermal properties of etched-well surface-emitting semiconductor lasers. IEEE J Quantum Electron, 1991,27(6): 1391~1401

    [17] Papannareddy R, Ferguson W, Butler J K. A generalized thermal model for stripe-geometry injection lasers. Journal of Applied Physics, 1987,62 (9): 3565 ~ 3569

    [20] Adachi S. Lattice thermal resistivity of Ⅲ-Ⅴ compound alloys. Journal of Applied Physics, 1983,54(4): 1844 ~ 1848

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Influence of Electrical Resistance of the Fused Interface on the Electrical and Thermal Characteristics of VCSELs[J]. Acta Photonica Sinica, 2005, 34(4): 503
    Download Citation