• Nano-Micro Letters
  • Vol. 16, Issue 1, 015 (2024)
Huibo Yan, Songmei Li, Jinyan Zhong*, and Bin Li**
Author Affiliations
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01227-x Cite this Article
    Huibo Yan, Songmei Li, Jinyan Zhong, Bin Li. An Electrochemical Perspective of Aqueous Zinc Metal Anode[J]. Nano-Micro Letters, 2024, 16(1): 015 Copy Citation Text show less
    References

    [1] D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1(10), 16119 (2016).

    [2] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004).

    [3] J. Wan, R. Wang, Z. Liu, L. Zhang, F. Liang et al., A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries. ACS Nano 17(2), 1610–1621 (2023).

    [4] Z. Hou, M. Dong, Y. Xiong, X. Zhang, Y. Zhu et al., Formation of solid-electrolyte interfaces in aqueous electrolytes by altering cation-solvation shell structure. Adv. Funct. Mater. 10(15), 1903665 (2020).

    [5] X. Zhang, T. Xiong, B. He, S. Feng, X. Wang et al., Recent advances and perspectives in aqueous potassium-ion batteries. Energy Environ. Sci. 15(9), 3750–3774 (2022).

    [6] Y. Li, W. Deng, Z. Zhou, C. Li, M. Zhang et al., An ultra-long life aqueous full K-ion battery. J. Mater. Chem. A 9(5), 2822–2829 (2021).

    [7] G.A. Elia, K. Marquardt, K. Hoeppner, S. Fantini, R. Lin et al., An overview and future perspectives of aluminum batteries. Adv. Mater. 28(35), 7564–7579 (2016).

    [8] J. Park, Z.L. Xu, G. Yoon, S.K. Park, J. Wang et al., Stable and high-power calcium-ion batteries enabled by calcium intercalation into graphite. Adv. Mater. 32(4), 1904411 (2020).

    [9] W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017).

    [10] N. Subjalearndee, N. He, H. Cheng, P. Tesatchabut, P. Eiamlamai et al., Gamma(ɣ)-MnO2/rRO fibered cathode fabrication from wet spinning and dip coating techniques for cable-shaped Zn-ion batteries. Adv. Fiber Mater. 4(3), 457–474 (2022).

    [11] C. Guan, F. Hu, X. Yu, H.-L. Chen, G.-H. Song et al., High performance of HNaV6O16·4H2O nanobelts for aqueous zinc-ion batteries with in-situ phase transformation by Zn(CF3SO3)2 electrolyte. Rare Met. 41(2), 448–456 (2021).

    [12] Y.-H. Du, X.-Y. Liu, X.-Y. Wang, J.-C. Sun, Q.-Q. Lu et al., Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries. Rare Met. 41(2), 415–424 (2021).

    [13] L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015).

    [14] H. Liang, Z. Cao, F. Ming, W. Zhang, D.H. Anjum et al., Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano Lett. 19(5), 3199–3206 (2019).

    [15] F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28(45), 1804975 (2018).

    [16] H.Y. Shi, Y.J. Ye, K. Liu, Y. Song, X. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57(50), 16359–16363 (2018).

    [17] L. Ma, S. Chen, H. Li, Z. Ruan, Z. Tang et al., Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode. Energy Environ. Sci. 11(9), 2521–2530 (2018).

    [18] Y. Zhao, Y. Lu, H. Li, Y. Zhu, Y. Meng et al., Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries. Nat. Commun. 13(1), 752 (2022).

    [19] V. Verma, S. Kumar, W. Manalastas, M. Srinivasan, Undesired reactions in aqueous rechargeable zinc ion batteries. ACS Energy Lett. 6(5), 1773–1785 (2021).

    [20] W. Yang, Y. Yang, H. Yang, H. Zhou, Regulating water activity for rechargeable zinc-ion batteries: progress and perspective. ACS Energy Lett. 7(8), 2515–2530 (2022).

    [21] H. Yu, D. Chen, T. Zhang, M. Fu, J. Cai et al., Insight on the double-edged sword role of water molecules in the anode of aqueous zinc-ion batteries. Small Struct. 3(12), 2200143 (2022).

    [22] Z. Xing, C. Huang, Z. Hu, Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord. Chem. Rev. 452, 214299 (2022).

    [23] Y. Geng, L. Pan, Z. Peng, Z. Sun, H. Lin et al., Electrolyte additive engineering for aqueous zn ion batteries. Energy Stor. Mater. 51, 733–755 (2022).

    [24] C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6(3), 1015–1033 (2021).

    [25] F. Wan, X. Zhou, Y. Lu, Z. Niu, J. Chen, Energy storage chemistry in aqueous zinc metal batteries. ACS Energy Lett. 5(11), 3569–3590 (2020).

    [26] B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12(11), 3288–3304 (2019).

    [27] M. Zhou, Y. Chen, G. Fang, S. Liang, Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Stor. Mater. 45, 618–646 (2022).

    [28] J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14(1), 42 (2022).

    [29] X. Wang, X. Li, H. Fan, L. Ma, Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 14(1), 205 (2022).

    [30] B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2021).

    [31] S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Stor. Mater. 34, 545–562 (2021).

    [32] Y. Wang, Z. Wang, F. Yang, S. Liu, S. Zhang et al., Electrolyte engineering enables high performance zinc-ion batteries. Small 18(43), 2107033 (2022).

    [33] C.-X. Xu, J.-J. Jiang, Electrolytes speed up development of zinc batteries. Rare Met. 40(4), 749–751 (2021).

    [34] L.F. Zhou, T. Du, J.Y. Li, Y.S. Wang, H. Gong et al., A strategy for anode modification for future zinc-based battery application. Mater. Horiz. 9(11), 2722–2751 (2022).

    [35] M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ. Sci. 14(7), 3796–3839 (2021).

    [36] S. Emamian, T. Lu, H. Kruse, H. Emamian, Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J. Comput. Chem. 40(32), 2868–2881 (2019).

    [37] K. Liu, J.D. Cruzan, R.J. Saykally, Water clusters. Science 271(5251), 929–933 (1996).

    [38] K. Kiyohara, Y. Kawai, Hydration of monovalent and divalent cations near a cathode surface. J. Chem. Phys. 151(10), 104704 (2019).

    [39] F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018).

    [40] L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015).

    [41] J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies on regulating Zn2+ solvation structure for dendrites-free and side reactions-suppressed zinc-ion batteries. Energy Environ. Sci. 15, 499–528 (2022).

    [42] H. Yan, S. Li, H. Xu, H. Chen, S. Yang et al., Triggering Zn2+ unsaturated hydration structure via hydrated salt electrolyte for high voltage and cycling stable rechargeable aqueous Zn battery. Adv. Energy Mater. 12(31), 2201599 (2022).

    [43] P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries: achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021).

    [44] B. Xiao, Intercalated water in aqueous batteries. Carbon Energy 2(2), 251–264 (2020).

    [45] D.Z. Caralampio, J.M. Martinez, R.R. Pappalardo, E.S. Marcos, The hydration structure of the heavy-alkalines Rb+ and Cs+ through molecular dynamics and x-ray absorption spectroscopy: surface clusters and eccentricity. Phys. Chem. Chem. Phys. 19(42), 28993–29004 (2017).

    [46] N. Chang, T. Li, R. Li, S. Wang, Y. Yin et al., An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13(10), 3527–3535 (2020).

    [47] P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021).

    [48] H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020).

    [49] J. Li, N.T. Tsona, L. Du, Effect of a single water molecule on the HO2 + ClO reaction. Phys. Chem. Chem. Phys. 20(16), 10650–10659 (2018).

    [50] H. Dong, J. Li, J. Guo, F. Lai, F. Zhao et al., Insights on flexible zinc-ion batteries from lab research to commercialization. Adv. Mater. 33(20), 2007548 (2021).

    [51] H. Glatz, E. Tervoort, D. Kundu, Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries. ACS Appl. Mater. Interfaces 12(3), 3522–3530 (2020).

    [52] J. Liu, J. Yang, X.C. Zeng, S.S. Xantheas, K. Yagi et al., Towards complete assignment of the infrared spectrum of the protonated water cluster H+(H2O)21. Nat. Commun. 12(1), 6141 (2021).

    [53] S. Kumar, V. Verma, R. Chua, H. Ren, P. Kidkhunthod et al., Multiscalar investigation of FeVO4 conversion cathode for a low concentration Zn(CF3SO3)2 rechargeable Zn-ion aqueous battery. Batteries Supercaps 3(7), 619–630 (2020).

    [54] W. Manalastas Jr., S. Kumar, V. Verma, L. Zhang, D. Yuan et al., Water in rechargeable multivalent-ion batteries: an electrochemical pandora’s box. Chemsuschem 12(2), 379–396 (2019).

    [55] A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120(14), 6878–6933 (2020).

    [56] W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020).

    [57] J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020).

    [58] L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33(12), 2007406 (2021).

    [59] X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020).

    [60] W. Guo, Y. Zhang, X. Tong, X. Wang, L. Zhang et al., Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Mater. Today Energy 20, 100675 (2021).

    [61] L. Zhang, I.A. Rodríguez-Pérez, H. Jiang, C. Zhang, D.P. Leonard et al., ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29(30), 1902653 (2019).

    [62] N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016).

    [63] X. Liu, H. Euchner, M. Zarrabeitia, X. Gao, G.A. Elia et al., Operando pH measurements decipher H+/Zn2+ intercalation chemistry in high-performance aqueous Zn/δ-V2O5 batteries. ACS Energy Lett. 5(9), 2979–2986 (2020).

    [64] Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31(43), 1903778 (2019).

    [65] Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019).

    [66] Z. Cai, J. Wang, Z. Lu, R. Zhan, Y. Ou et al., Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast-charging Zn battery chemistry. Angew. Chem. Int. Ed. 134(14), e202116560 (2022).

    [67] Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020).

    [68] C. Xie, Y. Li, Q. Wang, D. Sun, Y. Tang et al., Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review. Carbon Energy 2(4), 540–560 (2020).

    [69] Q. Li, Y. Zhao, F. Mo, D. Wang, Q. Yang et al., Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries. EcoMat 2(3), e12035 (2020).

    [70] L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14(11), 5669–5689 (2021).

    [71] B. Wu, Y. Mu, J. He, M. Li, Z. Li et al., In situ characterizations for aqueous rechargeable zinc batteries. Carbon Neutralization 2(3), 310–338 (2023).

    [72] X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023).

    [73] L. Wang, Y. Zhang, H. Hu, H.Y. Shi, Y. Song et al., A Zn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces 11(45), 42000–42005 (2019).

    [74] D. Kim, J. Jeon, A Zn(ClO4)2 supporting material for highly reversible zinc-bromine electrolytes. Bull. Korean Chem. Soc. 37(3), 299–304 (2016).

    [75] G. Kasiri, R. Trócoli, A.B. Hashemi, F. La Mantia, An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta 222, 74–83 (2016).

    [76] C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018).

    [77] S. Chen, R. Lan, J. Humphreys, S. Tao, Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Stor. Mater. 28, 205–215 (2020).

    [78] L. Cao, D. Li, T. Deng, Q. Li, C. Wang, Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem. Int. Ed. 59(43), 19292–19296 (2020).

    [79] B. Zhang, J. Wang, B. Wu, X.W. Guo, Y.J. Wang et al., Unmasking chloride attack on the passive film of metals. Nat. Commun. 9(1), 2559 (2018).

    [80] N.S.V. Narayanan, B.V. Ashokraj, S. Sampath, Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: Application in rechargeable zinc batteries. J. Colloid Interface Sci. 342(2), 505–512 (2010).

    [81] J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu et al., Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178 (2018).

    [82] J. Shin, D.S. Choi, H.J. Lee, Y. Jung, J.W. Choi, Hydrated intercalation for high-performance aqueous zinc ion batteries. Adv. Energy Mater. 9(14), 1900083 (2019).

    [83] F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang et al., Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 58(21), 7062–7067 (2019).

    [84] F. Wang, E. Hu, W. Sun, T. Gao, X. Ji et al., A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ. Sci. 11(11), 3168–3175 (2018).

    [85] W. Li, K. Wang, M. Zhou, H. Zhan, S. Cheng et al., Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte. ACS Appl. Mater. Interfaces 10(26), 22059–22066 (2018).

    [86] J. Han, A. Mariani, A. Varzi, S. Passerini, Green and low-cost acetate-based electrolytes for the highly reversible zinc anode. J. Power. Sour. 485, 229329 (2021).

    [87] M. Yang, J. Zhu, S. Bi, R. Wang, Z. Niu, A binary hydrate-melt electrolyte with acetate-oriented cross-linking solvation shells for stable zinc anodes. Adv. Mater. 34(18), 2201744 (2022).

    [88] X. Zhong, F. Wang, Y. Ding, L. Duan, F. Shi et al., Water-in-salt electrolyte Zn/LiFePO4 batteries. J. Electroanal. Chem. 867, 114193 (2020).

    [89] C. Zhang, W. Shin, L. Zhu, C. Chen, J.C. Neuefeind et al., The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Energy 3(2), 339–348 (2021).

    [90] H. Ao, W. Zhu, M. Liu, W. Zhang, Z. Hou et al., High-voltage and super-stable aqueous sodium-zinc hybrid ion batteries enabled by double solvation structures in concentrated electrolyte. Small Methods 5(7), 2100418 (2021).

    [91] C.Y. Chen, K. Matsumoto, K. Kubota, R. Hagiwara, Q. Xu, A room-temperature molten hydrate electrolyte for rechargeable zinc-air batteries. Adv. Energy Mater. 9(22), 1900196 (2019).

    [92] Y. Zhu, J. Yin, X. Zheng, A.-H. Emwas, Y. Lei et al., Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 14(8), 4463–4473 (2021).

    [93] Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11(1), 4463 (2020).

    [94] H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10(1), 5374 (2019).

    [95] J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019).

    [96] J. Zhang, J. Zhao, H. Du, Z. Zhang, S. Wang et al., Amide-based molten electrolyte with hybrid active ions for rechargeable Zn batteries. Electrochim. Acta 280, 108–113 (2018).

    [97] G.A. Giffin, The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat. Commun. 13(1), 5250 (2022).

    [98] Y. Xu, X. Zhou, Z. Chen, Y. Hou, Y. You et al., Electrolyte formulas of aqueous zinc ion battery: A physical difference with chemical consequences. Mater. Today 66, 339–347 (2023).

    [99] X. Cao, H. Jia, W. Xu, J.-G. Zhang, Review-localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168(1), 010522 (2021).

    [100] R. Xiao, Z. Cai, R. Zhan, J. Wang, Y. Ou et al., Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chem. Eng. J. 420, 129642 (2021).

    [101] L. Cao, D. Li, E. Hu, J. Xu, T. Deng et al., Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 142(51), 21404–21409 (2020).

    [102] F. Ming, Y. Zhu, G. Huang, A.H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144(16), 7160–7170 (2022).

    [103] J. Xie, Z. Liang, Y.C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19(9), 1006–1011 (2020).

    [104] Z. Wu, M. Li, Y. Tian, H. Chen, S.J. Zhang et al., Cyclohexanedodecol-assisted interfacial engineering for robust and high-performance zinc metal anode. Nano-Micro Lett. 14(1), 110 (2022).

    [105] M. Song, C.-L. Zhong, Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Met. 41(2), 356–360 (2021).

    [106] Y. Zhang, X. Han, R. Liu, Z. Yang, S. Zhang et al., Manipulating the zinc deposition behavior in hexagonal patterns at the preferential Zn(100) crystal plane to construct surficial dendrite-free zinc metal anode. Small 18(7), 2105978 (2022).

    [107] S. Li, J. Fu, G. Miao, S. Wang, W. Zhao et al., Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 33(21), 2008424 (2021).

    [108] M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), 2100187 (2021).

    [109] S. Khorsand, K. Raeissi, M.A. Golozar, An investigation on the role of texture and surface morphology in the corrosion resistance of zinc electrodeposits. Corros. Sci. 53(8), 2676–2678 (2011).

    [110] M. Mouanga, L. Ricq, J. Douglade, P. Berçot, Corrosion behaviour of zinc deposits obtained under pulse current electrodeposition: effects of coumarin as additive. Corros. Sci. 51(3), 690–698 (2009).

    [111] S.D. Pu, C. Gong, Y.T. Tang, Z. Ning, J. Liu et al., Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 34(28), 2202552 (2022).

    [112] J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019).

    [113] T. Foroozan, V. Yurkiv, S. Sharifi-Asl, R. Rojaee, F. Mashayek et al., Non-dendritic Zn electrodeposition enabled by zincophilic graphene substrates. ACS Appl. Mater. Interfaces 11(47), 44077–44089 (2019).

    [114] K. Zhang, Z. Yan, J. Chen, Electrodeposition accelerates metal-based batteries. Joule 4(1), 10–11 (2020).

    [115] J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), 2101649 (2021).

    [116] H. Lu, Q. Jin, X. Jiang, Z.M. Dang, D. Zhang et al., Vertical crystal plane matching between AgZn3(002) and Zn(002) achieving a dendrite-free zinc anode. Small 18(16), 2200131 (2022).

    [117] J. Zou, Z. Zeng, C. Wang, X. Zhu, J. Zhang et al., Ultraconformal horizontal zinc deposition toward dendrite-free anode. Small Struct. 4(1), 2200194 (2022).

    [118] X. Li, M. Li, K. Luo, Y. Hou, P. Li et al., Lattice matching and halogen regulation for synergistically induced uniform zinc electrodeposition by halogenated Ti3C2 mxenes. ACS Nano 16(1), 813–822 (2022).

    [119] Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 12(1), 6606 (2021).

    [120] H. Yan, C. Han, S. Li, J. Liu, J. Ren et al., Adjusting zinc ion de-solvation kinetics via rich electron-donating artificial SEI towards high Columbic efficiency and stable Zn metal anode. Chem. Eng. J. 442, 136081 (2022).

    [121] J. Wang, B. Zhang, Z. Cai, R. Zhan, W. Wang et al., Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Sci. Bull. 67(7), 716–724 (2022).

    [122] Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma et al., Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 34(4), 2106937 (2022).

    [123] J. Zhang, W. Huang, L. Li, C. Chang, K. Yang et al., Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv. Mater. 35(21), 2300073 (2023).

    [124] Y. Hao, D. Feng, L. Hou, T. Li, Y. Jiao et al., Gel electrolyte constructing Zn(002) deposition crystal plane toward highly stable Zn anode. Adv. Sci. 9(7), 2104832 (2022).

    [125] D. Yuan, J. Zhao, H. Ren, Y. Chen, R. Chua et al., Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem. Int. Ed. 60(13), 7213–7219 (2021).

    [126] K.E. Sun, T.K. Hoang, T.N. Doan, Y. Yu, X. Zhu et al., Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Interfaces 9(11), 9681–9687 (2017).

    [127] K.E.K. Sun, T.K.A. Hoang, T.N.L. Doan, Y. Yu, P. Chen, Highly sustainable zinc anodes for a rechargeable hybrid aqueous battery. Chem. Eur. J. 24(7), 1667–1673 (2018).

    [128] J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang et al., Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 11(29), 2101299 (2021).

    [129] Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14(1), 218 (2022).

    [130] Z. Hu, F. Zhang, A. Zhou, X. Hu, Q. Yan et al., Highly reversible Zn metal anodes enabled by increased nucleation overpotential. Nano-Micro Lett. 15(1), 171 (2023).

    [131] J. Ruan, D. Ma, K. Ouyang, S. Shen, M. Yang et al., 3D artificial array interface engineering enabling dendrite-free stable Zn metal anode. Nano-Micro Lett. 15(1), 37 (2023).

    [132] S. Xie, Y. Li, X. Li, Y. Zhou, Z. Dang et al., Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 14(1), 39 (2021).

    [133] H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro Lett. 14(1), 180 (2022).

    [134] L. Wang, W. Huang, W. Guo, Z.H. Guo, C. Chang et al., Sn alloying to inhibit hydrogen evolution of zn metal anode in rechargeable aqueous batteries. Adv. Funct. Mater. 32(1), 2108533 (2021).

    [135] W. Dong, J.-L. Shi, T.-S. Wang, Y.-X. Yin, C.-R. Wang et al., 3d zinc@carbon fiber composite framework anode for aqueous Zn–MnO2 batteries. RSC Adv. 8(34), 19157–19163 (2018).

    [136] S.B. Wang, Q. Ran, R.Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11(1), 1634 (2020).

    [137] M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust zn anode. Nano-Micro Lett. 14(1), 219 (2022).

    [138] C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong et al., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy (2020).

    [139] C. Liu, X. Chi, Q. Han, Y. Liu, A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte. Adv. Energy Mater. 10(12), 1903589 (2020).

    [140] C. Li, W. Wu, P. Wang, W. Zhou, J. Wang et al., Fabricating an aqueous symmetric supercapacitor with a stable high working voltage of 2V by using an alkaline-acidic electrolyte. Adv. Sci. 6(1), 1801665 (2019).

    [141] L. Chen, Z. Guo, Y. Xia, Y. Wang, High-voltage aqueous battery approaching 3V using an acidic-alkaline double electrolyte. Chem. Commun. 49(22), 2204–2206 (2013).

    [142] D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32(25), 2001894 (2020).

    [143] F. Yu, L. Pang, X. Wang, E.R. Waclawik, F. Wang et al., Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window. Energy Stor. Mater. 19, 56–61 (2019).

    [144] C. Li, W. Wu, S. Zhang, L. He, Y. Zhu et al., A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline-neutral electrolyte. J. Mater. Chem. A 7(8), 4110–4118 (2019).

    [145] X. Wang, R.S. Chandrabose, Z. Jian, Z. Xing, X. Ji, A 1.8V aqueous supercapacitor with a bipolar assembly of ion-exchange membranes as the separator. J. Electrochem. Soc. 163(9), A1853–A1858 (2016).

    [146] A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun et al., Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3(10), 2620–2640 (2018).

    [147] J. Song, K. Xu, N. Liu, D. Reed, X. Li, Crossroads in the renaissance of rechargeable aqueous zinc batteries. Mater. Today 45, 191–212 (2021).

    [148] Y. Jin, K.S. Han, Y. Shao, M.L. Sushko, J. Xiao et al., Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 30(43), 2003932 (2020).

    [149] Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019).

    [150] K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144(25), 11129–11137 (2022).

    [151] W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019).

    [152] A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020).

    [153] S. Jin, J. Yin, X. Gao, A. Sharma, P. Chen et al., Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes. Nat. Commun. 13(1), 2283 (2022).

    [154] Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15, 4748–4760 (2022).

    [155] X. Guo, Z. Zhang, J. Li, N. Luo, G.-L. Chai et al., Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 6(2), 395–403 (2021).

    [156] R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13(1), 3252 (2022).

    [157] R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15(1), 81 (2023).

    [158] Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31(26), 2101886 (2021).

    [159] W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13(1), 5348 (2022).

    [160] H. Zhang, R. Guo, S. Li, C. Liu, H. Li et al., Graphene quantum dots enable dendrite-free zinc ion battery. Nano Energy 92, 106752 (2022).

    [161] C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx mxene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13(1), 89 (2021).

    [162] F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018).

    [163] Z. Hu, F. Zhang, Y. Zhao, H. Wang, Y. Huang et al., A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries. Adv. Mater. (2022).

    [164] B.W. Olbasa, F.W. Fenta, S.-F. Chiu, M.-C. Tsai, C.-J. Huang et al., High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes. ACS Appl. Energy Mater. 3(5), 4499–4508 (2020).

    [165] D. Han, Z. Wang, H. Lu, H. Li, C. Cui et al., A self-regulated interface toward highly reversible aqueous zinc batteries. Adv. Energy Mater. (2022).

    [166] F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135(11), 4450–4456 (2013).

    [167] Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14, 3609–3620 (2021).

    [168] X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021).

    [169] D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021).

    [170] X. Zeng, K. Xie, S. Liu, S. Zhang, J. Hao et al., Bio-inspired design of an in-situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA cm-2 and 30 mA h cm-2. Energy Environ. Sci. 14, 5947–5957 (2021).

    [171] G. Ma, L. Miao, Y. Dong, W. Yuan, X. Nie et al., Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Stor. Mater. 47, 203–210 (2022).

    [172] H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Ultrafast zinc-ion-conductor interface toward high-rate and stable zinc metal batteries. Adv. Energy Mater. 11(18), 2100186 (2021).

    [173] C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020).

    [174] L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018).

    [175] P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020).

    [176] K. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 5(16), 1800848 (2018).

    [177] H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 7836–7846 (2020).

    [178] X. Liu, F. Yang, W. Xu, Y. Zeng, J. He et al., Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes. Adv. Sci. 7(21), 2002173 (2020).

    [179] X. Xu, Y. Xu, J. Zhang, Y. Zhong, Z. Li et al., Quasi-solid electrolyte interphase boosting charge and mass transfer for dendrite-free zinc battery. Nano-Micro Lett. 15(1), 56 (2023).

    [180] J.Y. Kim, G. Liu, R.E.A. Ardhi, J. Park, H. Kim et al., Stable Zn metal anodes with limited Zn-doping in MgF2 interphase for fast and uniformly ionic flux. Nano-Micro Lett. 14(1), 46 (2022).

    [181] K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13(1), 79 (2021).

    [182] Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59(38), 16594–16601 (2020).

    [183] Y. Su, B. Liu, Q. Zhang, J. Peng, C. Wei et al., Printing-scalable Ti3C2Tx mxene-decorated Janus separator with expedited Zn2+ flux toward stabilized Zn anodes. Adv. Funct. Mater. 32(32), 2204306 (2022).

    [184] Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022).

    Huibo Yan, Songmei Li, Jinyan Zhong, Bin Li. An Electrochemical Perspective of Aqueous Zinc Metal Anode[J]. Nano-Micro Letters, 2024, 16(1): 015
    Download Citation