• Chinese Optics Letters
  • Vol. 22, Issue 9, 091601 (2024)
Ganying Zeng1,2, Zhenyu Fang1,2, Weibao He3, Zixuan Wang1,2..., Yijie Li1,2, Liantuan Xiao1,2, Suotang Jia1,2, Chengbing Qin1,2,* and Renyan Zhang3,**|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202422.091601 Cite this Article Set citation alerts
    Ganying Zeng, Zhenyu Fang, Weibao He, Zixuan Wang, Yijie Li, Liantuan Xiao, Suotang Jia, Chengbing Qin, Renyan Zhang, "Visible-infrared-terahertz optical modulation of few-layer graphene through lithium intercalation," Chin. Opt. Lett. 22, 091601 (2024) Copy Citation Text show less
    References

    [1] Y. Zhang, J. Shen, J. Li et al. High-speed electro-optic modulation in topological interface states of a one-dimensional lattice. Light Sci. Appl., 12, 206(2023).

    [2] Z. Zhou, R. Song, J. Xu et al. Gate-tuning hybrid polaritons in twisted α-MoO3/graphene heterostructures. Nano Lett., 23, 11252(2023).

    [3] W. Zhao, B. Shen, Z. Tao et al. Gate-tunable heavy fermions in a moiré Kondo lattice. Nature, 616, 61(2023).

    [4] B. Zheng, G. X. Gu. Machine learning-based detection of graphene defects with atomic precision. Nano-Micro Lett., 12, 181(2020).

    [5] P. Huang, R. Lukin, M. Faleev et al. Unveiling the complex structure-property correlation of defects in 2D materials based on high throughput datasets. NPJ 2D Mater., 7, 6(2023).

    [6] S. Yang, Y. Chen, C. Jiang. Strain engineering of two-dimensional materials: methods, properties, and applications. InfoMat, 3, 397(2021).

    [7] M. Kapfer, B. S. Jessen, M. E. Eisele et al. Programming twist angle and strain profiles in 2D materials. Science, 381, 677(2023).

    [8] K. Bi, Q. Wan, Z. Shu et al. High-performance lateral MoS2-MoO3 heterojunction phototransistor enabled by in-situ chemical-oxidation. Sci. China Mater., 63, 1076(2020).

    [9] X. Zhu, Y. Cheng, F. Chen et al. Efficiency adjustable terahertz circular polarization anomalous refraction and planar focusing based on a bi-layered complementary Z-shaped graphene metasurface. J. Opt. Soc. Am. B, 39, 705(2022).

    [10] D. Yang, Y. Cheng, F. Chen et al. Efficiency tunable broadband terahertz graphene metasurface for circular polarization anomalous reflection and plane focusing effect. Diam. Relat. Mater., 131, 109605(2023).

    [11] J. Zhang, A. Yang, X. Wu et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun., 9, 5289(2018).

    [12] W. Bao, J. Wan, X. Han et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun., 5, 4224(2014).

    [13] M. Wang, K. J. Koski. Reversible chemochromic MoO3 nanoribbons through zerovalent metal intercalation. ACS Nano, 9, 3226(2015).

    [14] Y. Bao, Y. Han, L. Yang et al. Bioinspired controllable electro-chemomechanical coloration films. Adv. Funct., 29, 1806383(2019).

    [15] G. Zeng, R. Zhang, Y. Sui et al. Inversion symmetry breaking in lithium intercalated graphitic materials. ACS Appl. Mater. Interfaces, 12, 28561(2020).

    [16] G. Zeng, Z. Fang, C. Qin et al. Intercalating-induced second-harmonic generation in centrosymmetric multilayer graphene. Appl. Phys. Lett., 122, 121901(2023).

    [17] C. Zhang, G. Zeng, R. Zhang et al. Tunable nonlinear optical responses of few-layer graphene through lithium intercalation. Nanophotonics, 10, 2661(2021).

    [18] O. Salihoglu, H. Uzlu, O. Yakar et al. Graphene-based adaptive thermal camouflage. Nano Lett., 18, 4541(2018).

    [19] J. Wan, Y. Xu, B. Ozdemir et al. Tunable broadband nanocarbon transparent conductor by electrochemical intercalation. ACS Nano, 11, 788(2017).

    [20] K. F. Mak, L. Ju, F. Wang et al. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun., 152, 1341(2012).

    [21] R. R. Nair, P. Blake, A. N. Grigorenko et al. Fine structure constant defines visual transparency of graphene. Science, 320, 1308(2008).

    [22] X. Y. Song, K. Kinoshita, T. D. Tran et al. Microstructural characterization of lithiated graphite. J. Electrochem. Soc., 143, L120(1996).

    [23] S. K. Tiwari, S. Sahoo, N. Wang et al. Graphene research and their outputs: status and prospect. J. Sci. Adv. Mater. Dev., 5, 10(2020).

    [24] N. Liu, Q. Tang, B. Huang et al. Graphene synthesis: method, exfoliation mechanism and large-scale production. Crystals, 12, 25(2022).

    [25] S. Han. Structure and dynamics in the lithium solvation shell of nonaqueous electrolytes. Sci. Rep., 9, 5555(2019).

    [26] K. Karuppasamy, C. V. Vani, R. Antony et al. Effect of succinonitrile and nano-hydroxyapatite on ionic conductivity and interfacial stability of polyether-based plasticized nanocomposite polymer electrolytes (PNCSPE). Polym. Bull., 70, 2531(2013).

    [27] K. Kanetani, K. Sugawara, T. Sato et al. Ca intercalated bilayer graphene as a thinnest limit of superconducting C6Ca. Proc. Natl. Acad. Sci. U.S.A., 109, 19610(2012).

    [28] I. P. Batra, L. Samuelson. A theoretical study of the electronic properties of intercalated graphite. Synth. Met., 1, 233(1980).

    [29] Y. Sun, C. Zhang, F. Zhang et al. FeCl3 intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium-ion batteries. Energy Technol., 7, 1801091(2019).

    [30] F. Xiong, H. Wang, X. Liu et al. Li intercalation in MoS2: in situ observation of its dynamics and tuning optical and electrical properties. Nano Lett., 15, 6777(2015).

    [31] J. Zheng, Z. Ren, P. Guo et al. Diffusion of Li+ ion on graphene: a DFT study. Appl. Surf. Sci., 258, 1651(2011).

    [32] P. Beyer, E. Meister, T. Florian et al. Fermi level pinned molecular donor/acceptor junctions: reduction of induced carrier density by interfacial charge transfer complexes. J. Mater. Chem., 8, 15199(2020).

    [33] L. M. Malard, M. A. Pimenta, G. Dresselhaus et al. Raman spectroscopy in graphene. Phys. Rep., 473, 51(2009).

    [34] S. Gómez, N. M. Rendtorff, E. F. Aglietti et al. Surface modification of multiwall carbon nanotubes by sulfonitric treatment. Phys. Rep., 379, 264(2016).

    [35] T. Liang, G. Peng, X. Zhang et al. Modulating visible-near-infrared reflectivity in ultrathin graphite by reversible Li-ion intercalation. Opt. Mater., 121, 111517(2021).

    [36] S. Seiler, C. E. Halbig, F. Grote et al. Effect of friction on oxidative graphite intercalation and high-quality graphene formation. Nat. Commun., 9, 836(2018).

    [37] G. Zeng, R. Zhang, Y. Tan et al. Graphene-based tunable coloration film through intercalation. ACS Photonics, 8, 3599(2021).

    [38] I. Alonso Calafell, L. A. Rozema, D. Alcaraz Iranzo et al. Giant enhancement of third-harmonic generation in graphene–metal heterostructures. Nat. Nanotechnol., 16, 318(2021).

    [39] L. M. Malard, K. F. Mak, A. C. Neto et al. Observation of intra- and inter-band transitions in the transient optical response of graphene. New J. Phys., 15, 015009(2013).

    [40] J. Wang, J. Song, X. Mu et al. Optoelectronic and photoelectric properties and applications of graphene-based nanostructures. Mater. Today Phys., 13, 100196(2020).

    [41] K. Nakagawa, S. A. Sato, H. Tahara et al. Size-controlled quantum dots reveal the impact of intraband transitions on high-order harmonic generation in solids. Nat. Phys., 18, 874(2022).

    [42] N. Kakenov, O. Balci, E. O. Polat et al. Broadband terahertz modulators using self-gated graphene capacitors. J. Opt. Soc. Am. B, 32, 1861(2015).

    [43] C.-J. Yang, J. Li, M. Fiebig et al. Terahertz control of many-body dynamics in quantum materials. Nat. Rev. Mater., 8, 518(2023).

    Ganying Zeng, Zhenyu Fang, Weibao He, Zixuan Wang, Yijie Li, Liantuan Xiao, Suotang Jia, Chengbing Qin, Renyan Zhang, "Visible-infrared-terahertz optical modulation of few-layer graphene through lithium intercalation," Chin. Opt. Lett. 22, 091601 (2024)
    Download Citation