[1] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat Rev Mater, 2020, 5(4): 295?309.
[2] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater, 2004, 6(5): 299?303.
[3] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater Sci Eng, A, 2004, 375?377: 213?218.
[4] HONG W, CHEN F, SHEN Q, et al. Microstructural evolution and mechanical properties of (Mg, Co, Ni, Cu, Zn)O high-entropy ceramics[J]. J Am Ceram Soc, 2018, 102: 2228?2237.
[5] CHEN H, XIANG H M, DAI F Z, et al. High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion[J]. J Mater Sci Technol, 2020, 36: 134?139.
[6] LEE C, SONG G, GAO M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy[J]. Acta Mater, 2018, 160: 158?172.
[7] GILD J, SAMIEE M, BRAUN J L, et al. High-entropy fluorite oxides[J]. J Eur Ceram Soc, 2018, 38(10): 3578?3584.
[8] CHEN J, ZHOU X Y, WANG W L, et al. A review on fundamental of high entropy alloys with promising high-temperature properties[J]. J Alloys Compd, 2018, 760: 15?30.
[9] KAO Y F, CHEN S K, SHEU J H, et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys[J]. Int J Hydrogen Energy, 2010, 35(17): 9046?9059.
[10] NAGASE T, ANADA S, RACK P D, et al. MeV electron- irradiation-induced structural change in the bcc phase of Zr—Hf—Nb alloy with an approximately equiatomic ratio[J]. Intermetallics, 2013, 38: 70?79.
[11] ?INAR E, KO?YI?IT S, AYTIMUR A, et al. Synthesis, characterization, and thermoelectric properties of electrospun boron-doped barium-stabilized bismuth-cobalt oxide nanoceramics[J]. Metall Mater Trans A, 2014, 45(9): 3929?3937.
[12] CHARMAN W N, JELLEY J V. A search for pulses of fluorescence produced by supernovae in the upper atmosphere[J]. J Phys A: General Phys, 1972, 5(5): 773?780.
[13] KOZELJ P, VRTNIK S, JELEN A, et al. Discovery of a superconducting high-entropy alloy[J]. Phys Rev Lett, 2014, 113(10): 107001.
[14] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6: 8485.
[15] D?BROWA J, STYGAR M, MIKU?A A, et al. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure[J]. Mater Lett, 2018, 216: 32?36.
[16] QIU S H, LI M L, SHAO G, et al. (Ca,Sr,Ba)ZrO3: A promising entropy-stabilized ceramic for titanium alloys smelting[J]. J Mater Sci Technol, 2021, 65: 82?88.
[17] GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Sci Rep, 2016, 6: 37946.
[18] WANG Y P, GAN G Y, WANG W, et al. Ab initio prediction of mechanical and electronic properties of ultrahigh temperature high-entropy ceramics (Hf0.2Zr0.2Ta0.2M0.2Ti0.2)B2 (M?=?Nb, Mo, Cr)[J]. Phys Status Solidi B, 2018, 255(8): 18000117.
[19] TALLARITA G, LICHERI R, GARRONI S, et al. Novel processing route for the fabrication of bulk high-entropy metal diborides[J]. Scripta Mater, 2019, 158: 100?104.
[20] ZHOU J Y, ZHANG J Y, ZHANG F, et al. High-entropy carbide: A novel class of multicomponent ceramics[J]. Ceram Int, 2018, 44(17): 22014?22018.
[21] YE B L, WEN T Q, LIU D, et al. Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073?1473 K in air[J]. Corros Sci, 2019, 153: 327?332.
[22] YANG Y, MA L, GAN G Y, et al. Investigation of thermodynamic properties of high entropy (TaNbHfTiZr)C and (TaNbHfTiZr)N[J]. J Alloys Compd, 2019, 788: 1076?1083.
[23] QIN Y, WANG J C, LIU J X, et al. High-entropy silicide ceramics developed from (TiZrNbMoW)Si2 formulation doped with aluminum [J]. J Eur Ceram Soc, 2020, 40(8): 2752?2759.
[24] WANG H L, LEE S H, KIM H D, et al. Synthesis of ultrafine hafnium diboride powders using solution-based processing and spark plasma sintering[J]. Int J Appl Ceram Technol, 2014, 11(2): 359?363.
[25] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Prog Mater Sci, 2014, 61: 1?93.
[26] MIRACLE D B, SENKOV O N A critical review of high entropy alloys and related concepts[J]. Acta Mater, 2017, 122: 448?511.
[27] DARVISH S, GOPALAN S, ZHONG Y. Thermodynamic stability maps for the La0.6Sr0.4Co0.2Fe0.8O3±δ?CO2?O2 system for application in solid oxide fuel cells[J]. J Power Sources, 2016, 336: 351?359.
[28] FAHRENHOLTZ W G, HILMAS G E. Ultra-high temperature ceramics: Materials for extreme environments[J]. Scripta Mater, 2017, 129: 94?99.
[29] WEINBERGER C R, THOMPSON G B. Review of phase stability in the group IVB and VB transition-metal carbides[J]. J Am Ceram Soc, 2018, 101(10): 4401?4424.
[30] ZHANG H M, ZHAO B, DAI F Z, et al. (Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B: A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band[J]. J Mater Sci Technol, 2021, 77: 58?65.
[31] ZHAO P B, ZHU J P, ZHANG Y L, et al. A novel high-entropy monoboride (Mo0.2Ta0.2Ni0.2Cr0.2W0.2)B with superhardness and low thermal conductivity[J]. Ceram Int, 2020, 46(17): 26626?26631.
[32] QIN M, YAN Q, WANG H, et al. High-entropy rare earth tetraborides[J]. J Eur Ceram Soc, 2021, 41(4): 2968?2973.
[33] ZHANG W, ZHAO B, NI N, et al. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance[J]. J Mater Sci Technol, 2021, 87: 155?166.
[34] QIN M D, YAN Q Z, LIU Y, et al. Bulk high-entropy hexaborides[J]. J Eur Ceram Soc, 2021, 41(12): 5775?5781.
[35] CHEN H, ZHAO Z, XIANG H, et al. Effect of reaction routes on the porosity and permeability of porous high entropy (Y0.2Yb0.2Sm0.2Nd0.2Eu0.2)B6 for transpiration cooling[J]. J Mater Sci Technol, 2020, 38: 80?85.
[36] ZHANG W M, ZHAO B, XIANG H M, et al. One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/ borates (HE REB6/HE REBO3) composite powders[J]. J Adv Ceram, 2021, 10(1): 62?77.
[37] FAILLA S, GALIZIA P, FU S, et al. Formation of high entropy metal diborides using arc-melting and combinatorial approach to study quinary and quaternary solid solutions[J]. J Eur Ceram Soc, 2020, 40(3): 588?593.
[38] ZHANG Y, JIANG Z B, SUN S K, et al. Microstructure and mechanical properties of high-entropy borides derived from boro/carbothermal reduction[J]. J Eur Ceram Soc, 2019, 39(13): 3920?3924.
[42] XIANG H M, XING Y, DAI F Z, et al. High-entropy ceramics: Present status, challenges, and a look forward[J]. J Adv Ceram, 2021, 10(3): 385?441.
[43] AKRAMI S, EDALATI P, FUJI M, et al. High-entropy ceramics: Review of principles, production and applications[J]. Mater Sci Eng R Rep, 2021, 146: 146: 100644.
[44] QIN M D, YAN Q Z, LIU Y, et al. A new class of high-entropy M3B4 borides[J]. J Adv Ceram, 2021, 10(1): 166?172.
[45] YEH J W. Physical metallurgy of high-entropy alloys[J]. JOM, 2015, 67(10): 2254?2261.
[46] ZHOU N X, JIANG S C, HUANG T, et al. Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics[J]. Sci Bull, 2019, 64(12): 856?864.
[47] WEN T Q, YE B L, LIU H H, et al. Formation criterion for binary metal diboride solid solutions established through combinatorial methods[J]. J Am Ceram Soc, 2020, 103(5): 3338?3348.
[48] GU J F, ZOU J, SUN S K, et al. Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach[J]. Sci China-Mater, 2019, 62(12): 1898?1909.
[49] SHEN X Q, LIU J X, LI F, et al. Preparation and characterization of diboride-based high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC particulate composites[J]. Ceram Int, 2019, 45(18): 24508?24514.
[50] LIU D, LIU H H, NING S S, et al. Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction[J]. J Am Ceram Soc, 2019, 102(12): 7071?7076.
[51] FENG L, FAHRENHOLTZ W G, HILMAS G E. Two-step synthesis process for high-entropy diboride powders[J]. J Am Ceram Soc, 2020, 103(2): 724?730.
[52] ZHANG Y, GUO W M, JIANG Z B, et al. Dense high-entropy boride ceramics with ultra-high hardness[J]. Scripta Mater, 2019, 164: 135?139.
[53] LIU D, WEN T Q, YE B L, et al. Synthesis of superfine high-entropy metal diboride powders[J]. Scripta Mater, 2019, 167: 110?114.
[54] MONTEVERDE F, SARAGA F. Entropy stabilized single-phase (Hf, Nb, Ta, Ti, Zr)B2 solid solution powders obtained via carbo/boro-thermal reduction[J]. J Alloys Compd, 2020, 824: 153930.
[55] MONTEVERDE F, SARAGA F, GABOARDI M. Compositional disorder and sintering of entropy stabilized (Hf, Nb, Ta, Ti, Zr)B2 solid solution powders[J]. J Eur Ceram Soc, 2020, 40(12): 3807?3814.
[56] STORR B, KODALI D, CHAKRABARTY K, et al. Single-step synthesis process for high-entropy transition metal boride powders using microwave plasma[J]. Ceramics, 2021, 4(2): 257?264.
[57] LIU D, LIU H, NING S, et al. Chrysanthemum-like high-entropy diboride nanoflowers: A new class of high-entropy nanomaterials[J]. J Adv Ceram, 2020, 9(3): 339?348.
[58] YE B, FAN C, HAN Y, et al. Synthesis of high-entropy diboride nanopowders via molten salt-mediated magnesiothermic reduction[J]. J Am Ceram Soc, 2020, 103(9): 4738?4741.
[59] ZHAO P B, ZHU J P, WANG H L, et al. Dense HfB2 ceramics fabricated by high-energy ball milling and spark plasma sintering[J]. Mater Chem Phys, 2021, 258.
[60] GUO W M, ZHANG G J. Reaction processes and characterization of ZrB2 powder prepared by boro/carbothermal reduction of ZrO2 in vacuum[J]. J Am Ceram Soc, 2009, 92(1): 264?267.
[61] ZOU J, ZHANG G J, VLEUGELS J, et al. High temperature strength of hot pressed ZrB2-120 vol% SiC ceramics based on ZrB2 starting powders prepared by different carbo/boro-thermal reduction routes[J]. J Eur Ceram Soc, 2013, 33(10): 1609?1614.
[62] GILD J, WRIGHT A, QUIAMBAO-TOMKO K, et al. Thermal conductivity and hardness of three single-phase high-entropy metal diborides fabricated by borocarbothermal reduction and spark plasma sintering[J]. Ceram Int, 2020, 46(5): 6906?6913.
[63] CHEN H, XIANG H M, DAI F Z, et al. Porous high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: A novel strategy towards making ultrahigh temperature ceramics thermal insulating[J]. J Mater Sci Technol, 2019, 35(10): 2404?2408.
[64] WANG C, QIN M, LEI T, et al. Synergic grain boundary segregation and precipitation in W—and W—Mo-containing high-entropy borides[J]. J Eur Ceram Soc, 2021, 41(10): 5380?5387.
[65] MA M, YE B, HAN Y, et al. High-pressure sintering of ultrafine-grained high-entropy diboride ceramics[J]. J Am Ceram Soc, 2020, 103(12): 6655?6658.
[66] LI M, ZHAO X, SHAO G, et al. Oscillatory pressure sintering of high entropy (Zr0.2Ta0.2Nb0.2Hf0.2Mo0.2)B2 ceramic[J]. Ceram Int, 2021, 47(6): 8707?8710.
[67] QIN M D, YAN Q Z, WANG H R, et al. High-entropy monoborides: Towards superhard materials[J]. Scripta Mater, 2020, 189: 101?105.
[68] QIN M, GILD J, WANG H, et al. Dissolving and stabilizing soft WB2 and MoB2 phases into high-entropy borides via boron-metals reactive sintering to attain higher hardness[J]. J Eur Ceram Soc, 2020, 40(12): 4348?4353.
[69] GILD J, KAUFMANN K, VECCHIO K, et al. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics[J]. Scripta Mater, 2019, 170: 106?110.
[70] BARBAROSSA S, ORRù R, GARRONI S, et al. Ultra high temperature high-entropy borides: Effect of graphite addition on oxides removal and densification behaviour[J]. Ceram Int, 2021, 47(5): 6220?6231.
[71] MONTEVERDE F, GUICCIARDI S, BELLOSI A. Advances in microstructure and mechanical properties of zirconium diboride based ceramics[J]. Mater Sci Eng, A, 346(1/2): 310?319.
[72] ZHANG H, HEDMAN D, FENG P, et al. A high-entropy B4(HfMo2TaTi)C and SiC ceramic composite[J]. Dalton Trans, 2019, 48(16): 5161?5167.
[73] LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics[J]. J Adv Ceram, 2020, 9(4): 503?510.
[74] ZHANG Y, SUN S K, GUO W M, et al. Optimal preparation of high-entropy boride-silicon carbide ceramics[J]. J Adv Ceram, 2021, 10(1): 173?180.
[75] LU K, LIU J X, WEI X F, et al. Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase[J]. J Eur Ceram Soc, 2020, 40(54): 1839?1847.
[76] FENG L, FAHRENHOLTZ W G, HILMAS G E, et al. Effect of Nb content on the phase composition, densification, microstructure, and mechanical properties of high-entropy boride ceramics[J]. J Eur Ceram Soc, 2021, 41(1): 92?100.
[77] FENG L, FAHRENHOLTZ W G, HILMAS G E. Processing of dense high-entropy boride ceramics[J]. J Eur Ceram Soc, 2020, 40(12): 3815?3823.
[78] ZHANG Y, SUN S K, GUO W M, et al. Fabrication of textured (Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2 high-entropy ceramics[J]. J Eur Ceram Soc, 2021, 41(1): 1015?1019.
[79] ZHANG Y, SUN S K, ZHANG W, et al. Improved densification and hardness of high-entropy diboride ceramics from fine powders synthesized via borothermal reduction process[J]. Ceram Int, 2020, 46(9): 14299?14303.
[80] SAIRAM K, SONBER J K, MURTHY T S R C, et al. Reaction spark plasma sintering of niobium diboride[J]. INT J Refract Met H, 2014, 43: 259?262.
[81] LICHERI R, ORRU R, MUSA C, et al. Synthesis, densification and characterization of TaB2-SiC composites[J]. Ceram Int, 2010, 36(3): 937?941.
[82] NI D W, ZHANG G J, KAN Y M, et al. Hot Pressed HfB2 and HfB2-20vol%SiC ceramics based on HfB2 powder synthesized by borothermal reduction of HfO2*[J]. Int J Appl Ceram Technol, 2010, 7(6): 830?836.
[83] CHAMBERLAIN A L, FAHRENHOLTZ W G, HILMAS G E, et al. High-strength zirconium diboride-based ceramics[J]. J Am Ceram Soc, 2004, 87(6): 1170?1172.
[84] MUKHOPADHYAY A, RAJU G B, BASU B, et al. Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics[J]. J Eur Ceram Soc, 2009, 29(3): 505?516.
[85] EVANS A G, CHARLES E A. Fracture toughness determinations by indentation[J]. J Am Ceram Soc, 1976, 59(7/8): 371?372.
[86] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[J]. J Am Ceram Soc, 1981, 64(9): 533?538.
[87] KANER R B, GILMAN J J, TOLBERT S H. Materials science. designing superhard materials[J]. Science, 2005, 308(5726): 1268?1269.
[88] WU W W, SAKKA Y, SUZUKI T S, et al. Microstructure and anisotropic properties of textured ZrB2 and ZrB2-MoSi2 ceramics prepared by strong magnetic field alignment[J]. Int J Appl Ceram Technol, 2014, 11(2): 218?227.
[89] LIU H T, ZOU J, NI D W, et al. Textured and platelet-reinforced ZrB2-based ultra-high-temperature ceramics[J]. Scripta Mater, 2011, 65(1): 37?40.
[90] MALLIK M, KAILATH A J, RAY K K, et al. Effect of SiC content on electrical, thermal and ablative properties of pressureless sintered ZrB2-based ultrahigh temperature ceramic composites[J]. J Eur Ceram Soc, 2017, 37(2): 559?572.
[91] BAHARVANDI H R, MASHAYEKH S. Effects of SiC content on the densification, microstructure, and mechanical properties of HfB2-SiC composites[J]. Int J Appl Ceram Technol, 2019, 17(2): 449?458.
[92] QIN M, GILD J, HU C, et al. Dual-phase high-entropy ultra-high temperature ceramics[J]. J Eur Ceram Soc, 2020, 40(15): 5037?5050.
[93] LUO S C, GUO W M, PLUCKNETT K, et al. Fine-grained dual-phase high-entropy ceramics derived from boro/carbothermal reduction[J]. J Eur Ceram Soc, 2021, 41(6): 3189?3195.
[94] TALLARITA G, LICHERI R, GARRONI S, et al. High-entropy transition metal diborides by reactive and non-reactive spark plasma sintering: A comparative investigation[J]. J Eur Ceram Soc, 2020, 40(4): 942?952.
[95] DEHLINGER A S, PIERSON J F, ROMAN A, et al. Properties of iron boride films prepared by magnetron sputtering[J]. Surf Coat Technol, 2003, 174?175: 331?337.
[96] OKADA S, KUDOU K, IIZUMI K, et al. Single-crystal growth and properties of CrB, Cr3B4, Cr2B3 and CrB2 from high-temperature aluminum solutions[J]. J Cryst Growth, 1996, 166(1?4): 429?435.