• Photonics Research
  • Vol. 9, Issue 7, 1391 (2021)
Yan Chen1, Kejian Chen1、*, Dajun Zhang2, Shihao Li1, Yeli Xu1, Xiong Wang2, and Songlin Zhuang1
Author Affiliations
  • 1Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • show less
    DOI: 10.1364/PRJ.422686 Cite this Article Set citation alerts
    Yan Chen, Kejian Chen, Dajun Zhang, Shihao Li, Yeli Xu, Xiong Wang, Songlin Zhuang. Ultrabroadband microwave absorber based on 3D water microchannels[J]. Photonics Research, 2021, 9(7): 1391 Copy Citation Text show less
    References

    [1] E. F. Knott, J. F. Shaeffer, M. T. Tuley. Radar Cross Section(2004).

    [2] D. D. L. Chung. EM interference shielding effectiveness of carbon materials. Carbon, 39, 279-285(2001).

    [3] T. S. Almoneef, F. Erkmen, O. M. Ramahi. Harvesting the energy of multi-polarized electromagnetic waves. Sci. Rep., 7, 14656(2017).

    [4] Z. Jiang, S. Yun, F. Toor, D. Werner, T. S. Mayer. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano, 5, 4641-4647(2011).

    [5] A. K. Moridani, R. Zando, W. Xie, I. Howell, J. Watkins, J. Lee. Plasmonic thermal emitters for dynamically tunable infrared radiation. Adv. Opt. Mater., 5, 1600993(2017).

    [6] L. Lei, F. Lou, K. Tao, H. Huang, X. Cheng, X. Ping. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Photon. Res., 7, 734-741(2019).

    [7] A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, B. T. Kuhlmey. Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances. Nat. Commun., 4, 2706(2013).

    [8] J. L. Wallace. Broadband magnetic microwave absorbers: fundamental limitations. IEEE Trans. Magn., 29, 4209-4214(1993).

    [9] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [10] Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, S. Qu. Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption. Sci. Rep., 6, 29429(2016).

    [11] Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett., 12, 1443-1447(2012).

    [12] B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, T. Jiang. Polarization insensitive metamaterial absorber with wide incident angle. Prog. Electromagn. Res., 101, 231-239(2010).

    [13] C. Zhang, J. Yang, W. Cao, W. Yuan, J. Ke, L. Yang, Q. Cheng, T. Cui. Transparently curved metamaterial with broadband millimeter wave absorption. Photon. Res., 7, 478-485(2019).

    [14] J. Zhao, S. Wei, C. Wang, K. Chen, B. Zhu, T. Jiang, Y. Feng. Broadband microwave absorption utilizing water-based metamaterial structures. Opt. Express, 26, 8522-8531(2018).

    [15] A. Andryieuski, S. Kuznetsova, S. Zhukovsky, Y. Kivshar, A. Lavrinenko. Water: promising opportunities for tunable all-dielectric electromagnetic metamaterials. Sci. Rep., 5, 13535(2015).

    [16] Y. J. Yoo, S. Ju, S. Y. Park, Y. J. Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, Y. P. Lee. Metamaterial absorber for electromagnetic waves in periodic water droplets. Sci. Rep., 5, 14018(2015).

    [17] Y. Pang, J. Wang, Q. Cheng, S. Xia, S. Qu. Thermally tunable water-substrate broadband metamaterial absorbers. Appl. Phys. Lett., 110, 104103(2017).

    [18] X. Zhang, D. Zhang, Y. Fu, S. Li, Y. Wei, K. Chen, X. Wang, S. Zhuang. 3D printed swastika shape ultra-broadband water-based microwave absorber. IEEE Antennas Wireless Propag. Lett., 19, 821-825(2020).

    [19] Y. Youngseo, L. Daecheon, M. M. Tentzeris, L. Sungjoon. Low-cost metamaterial absorber using three-dimensional circular truncated cone. Microw. Opt. Technol. Lett., 60, 1622-1630(2018).

    [20] W. J. Ellison. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C. J. Phys. Chem. Ref. Data, 36, 1-18(2007).

    [21] J. Xie, S. Quader, F. Xiao, C. He, I. D. Rukhlenko. Truly all-dielectric ultra-broadband metamaterial absorber: water-based and ground-free. IEEE Antennas Wireless Propag., 18, 536-540(2019).

    [22] H. T. Chen. Interference theory of metamaterial perfect absorbers. Opt. Express, 20, 7165-7172(2012).

    [23] H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys. Rev. B, 78, 241103(2008).

    [24] H. Kwon, G. D’Aguanno, A. Alu. Optically transparent microwave absorber based on water-based moth-eye structures. Opt. Express, 29, 9190-9198(2021).

    [25] R. Jian, Y. Yuan. Cylindrical-water-resonator-based ultra-broadband microwave absorber. Opt. Mater. Express, 8, 2060-2071(2018).

    [26] H. Xiong, F. Yang. Ultra-broadband and tunable saline water-based absorber in microwave regime. Opt. Express, 28, 5306-5316(2020).

    [27] Y. Zhou, Z. Shen, J. Wu, Y. Zhang, S. Huang, H. Yang. Design of ultra-wideband and near-unity absorption water-based metamaterial absorber. Appl. Phys. A, 126, 52(2020).

    Yan Chen, Kejian Chen, Dajun Zhang, Shihao Li, Yeli Xu, Xiong Wang, Songlin Zhuang. Ultrabroadband microwave absorber based on 3D water microchannels[J]. Photonics Research, 2021, 9(7): 1391
    Download Citation