• Photonics Research
  • Vol. 9, Issue 7, 1191 (2021)
Meng’en Wei1、2, Tingqing Cheng1, Renqin Dou3, Qingli Zhang3, and Haihe Jiang1、2、*
Author Affiliations
  • 1Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
  • 2University of Science and Technology of China, Hefei 230026, China
  • 3Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
  • show less
    DOI: 10.1364/PRJ.424989 Cite this Article Set citation alerts
    Meng’en Wei, Tingqing Cheng, Renqin Dou, Qingli Zhang, Haihe Jiang. Superior performance of a 2 kHz pulse Nd:YAG laser based on a gradient-doped crystal[J]. Photonics Research, 2021, 9(7): 1191 Copy Citation Text show less
    References

    [1] A. K. Cousins. Temperature and thermal stress scaling in finite-length end-pumped laser rods. IEEE J. Quantum Electron., 28, 1057-1069(1992).

    [2] Y. Chen, T. Huang, C. Kao, C. Wang, S. Wang. Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect. IEEE J. Quantum Electron., 33, 1424-1429(1997).

    [3] W. Koechner. Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystal. Appl. Opt., 9, 1429-1434(1970).

    [4] T. Y. Fan. Heat generation in Nd:YAG and Yb:YAG. IEEE J. Quantum Electron., 29, 1457-1459(1993).

    [5] G. Wagner, M. Shiler, V. Wulfmeyer. Simulations of thermal lensing of a Ti:sapphire crystal end-pumped with high average power. Opt. Express, 13, 8045-8055(2005).

    [6] M. Nadimi, T. Waritanant, A. Major. High power and beam quality continuous-wave Nd:GdVO4 laser in-band diode-pumped at 912 nm. Photon. Res., 5, 346-349(2017).

    [7] E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris. High-power dual-rod Yb:YAG laser. Opt. Lett., 25, 805-807(2000).

    [8] Y. Huang, Y. Huang, H. Liang, K. Su, Y. Chen, K. Huang. Comparative study between conventional and diffusion-bonded Nd-doped vanadate crystals in the passively mode-locked operation. Opt. Express, 18, 9518-9524(2010).

    [9] D. Kracht, M. Frede, R. Wilhelm, C. Fallnich. Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping. Opt. Express., 13, 6212-6216(2005).

    [10] Y. Mao, Y. Gao, L. Wang. 254 W laser-diode dual-end-pumped Tm:YAP InnoSlab laser. Appl. Opt., 59, 8224-8227(2020).

    [11] Y. Chen, L. Lee, T. Huang, C. Wang. Study of high-power diode-end-pumped Nd:YVO4 laser at 1.34 μm: influence of Auger upconversion. Opt. Commun., 163, 198-202(1999).

    [12] Y. Chen. Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture. IEEE J. Quantum Electron., 35, 234-239(1999).

    [13] V. Kushawaha, Y. Chen. Diode end-pumped high-efficiency Nd:YAG laser. Appl. Phys. B, 59, 659-661(1994).

    [14] M. Frede, D. Kracht, M. Engelbrecht, C. Fallnich. Compact high-power end-pumped Nd:YAG laser. Opt. Laser Technol., 38, 183-185(2006).

    [15] R. Wilhelm, D. Freiburg, M. Frede, D. Kracht. End-pumped Nd:YAG laser with a longitudinal hyperbolic dopant concentration profile. Opt. Express, 16, 20106-20116(2008).

    [16] R. Wilhelm, M. Frede, D. Kracht. Power scaling of end–pumped solid–state rod lasers by longitudinal dopant concentration gradients. IEEE J. Quantum Electron., 44, 232-244(2008).

    [17] A. M. Rodin, M. Grishin, A. Michailovas. Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal. Opt. Laser Technol., 76, 46-52(2016).

    [18] Q. Shen, X. Cui, M. Yan, U. Eismann, T. Yuan, W. Zhang, C. Peng, Y. Chen, J. Pan. 11-watt single-frequency 1342-nm laser based on multi-segmented Nd:YVO4 crystal. Opt. Express, 27, 31913-31925(2019).

    [19] Q. Zhang, S. Yin, D. Sun, W. Ming. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method. Sci. China Phys. Mech., 51, 481-491(2008).

    [20] V. V. Galutskiy, M. I. Vatlina, E. V. Stroganova. Growth of single crystal with a gradient of concentration of impurities by the Czochralski method using additional liquid charging. J. Cryst. Growth, 311, 1190-1194(2009).

    [21] H. Kogelnik. Imaging of optical modes—resonators with internal lenses. Bell Syst. Tech. J., 44, 455-494(1965).

    [22] H. Eichler, A. Haase, R. Menzel, A. Siemoneit. Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier. J. Phys. D, 26, 1884-1891(1993).

    [23] W. Roger, B. Neuenschwander, M. M. Donald, M. B. Roos, H. Weber. Cooling schemes for longitudinally diode laser-pumped Nd:YAG rods. IEEE J. Quantum Electron., 34, 1046-1053(1998).

    [24] X. Peng, L. Xu, A. K. Asundi. Thermal lensing effects for diode-end-pumped Nd:YVO4 and Nd:YAG lasers. Opt. Eng., 43, 2454-2461(2004).

    [25] W. Koechner, D. Rice. Effect of birefringence on the performance of linearly polarized YAG:Nd lasers. IEEE J. Quantum Electron., 6, 557-566(1970).

    [26] W. Koechner. Solid-State Laser Engineering(1992).

    Meng’en Wei, Tingqing Cheng, Renqin Dou, Qingli Zhang, Haihe Jiang. Superior performance of a 2 kHz pulse Nd:YAG laser based on a gradient-doped crystal[J]. Photonics Research, 2021, 9(7): 1191
    Download Citation